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P r e f a c e  

By the development of new fields and applications, such as Automated 
Theorem Proving and Logic Programming, Logic has obtained a new and 
important role in Computer Science. The traditional mathematical way of 
dealing with Logic is in some respect not tailored for Computer Science ap- 
plications. This book emphasizes such Computer Science aspects in Logic. 
It arose from a series of lectures in 1986 and 1987 on Computer Science 
Logic at the EWH University in Koblenz, Germany. The goal of this lec- 
ture series was to give the undergraduate student an early and theoretically 
well-founded access to modern applications of Logic in Computer Science. 

A minimal mathematical basis is required, such as an understanding 
of the set theoretic notation and knowledge about the basic mathematical 
proof techniques (like induction). More sophisticated mathematical knowl- 
edge is not a precondition to read this book. Acquaintance with some 
conventional programming language, like PASCAL, is assumed. 

Several people helped in various ways in the preparation process of the 
original German version of this book: Johannes KSbler, Eveline and Rainer 
Schuler, and Hermann Engesser from B.I. Wissenschaftsverlag. 

Regarding the English version, I want to express my deep gratitude to 
Prof. Ronald Book. Without him, this translated version of the book would 
not have been possible. 

Koblenz, June 1989 U. SchSning 
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I n t r o d u c t i o n  

Formal Logic investigates how assertions are combined and connected, how 
theorems formally can be deduced from certain axioms, and what kind of 
object a proof is. In Logic there is a consequent separation of syntactical 
notions (formulas, proofs) - these are essentially strings of symbols built up 
according to certain rules - and semantical notions (truth values, models) 
- these are "interpretations", assignments of ~meanings" to the syntactical 
objects. 

Because of its development from philosophy, the questions investigated 
in Logic were originally of a more fundamental character, like" What is 
truth? What theories are axiomatizable? What is a model of a certain 
axiom system?, and so on. In general, it can be said that traditional Logic is 
oriented to fundamental questions, whereas Computer Science is interested 
in what is programmable. This book provides some unification of both 
aspects. 

Computer Science has utilized many subfields of Logic in areas such 
as program verification, semantics of programming languages, automated 
theorem proving, and logic programming. This book concentrates on those 
aspects of Logic which have applications in Computer Science, especially 
theorem proving and logic programming. From the very beginning, edu- 
cation in Computer Science supports the idea of strict separation between 
syntax and semantics (of programming languages). Also, recursive defini- 
tions, equations and programs are a familiar thing to a first year Computer 
Science student. This book is oriented in its style of presentation to this 
style. 

In the first Chapter, propositional logic is introduced with emphasis 
on the resolution calculus and Horn formulas (which have their particular 
Computer Science applications in later sections). The second Chapter intro- 
duces the predicate logic. Again, Computer Science aspects are emphasized, 
like undecidability and semi-decidability of predicate logic, Herbrand's the- 
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ory, and building upon this, the resolution calculus (and its refinements) 
for predicate logic is discussed. Most modern theorem proving programs 
are based on resolution refinements as discussed in Section 2.6. 

The third Chapter leads to the special version of resolution (SLD- 
resolution) used in logic programming systems, as realized in the logic 
programming language PROLOG (= Programming in Logic). The idea 
of this book, though, is not to be a programmer's manual for PROLOG. 
Rather, the aim is to give the theoretical foundations for an understanding 
of logic programming in general. 

E x e r c i s e  1: "What  is the secret of your long life?" a centenarian was 
asked. "I strictly follow my diet: If I don' t  drink beer for dinner, then I 
always have fish. Any time I have both beer and fish for dinner, then I do 
without ice cream. If I have ice cream or don't  have beer, then I never eat 
fish." The questioner found this answer rather confusing. Can you simplify 
it? 

Find out which formal methods (diagrams, graphs, tables, etc.) you used 
to solve this Exercise. You have done your own first steps to develop a 
Formal Logic! 



Chapter  1 

P R O P O S I T I O N A L  
L O G I C  

1.1 Foundat ions  

Propositional logic explores simple grammatical  connections, like and, or 
and not, between the simplest "atomic sentences". Such atomic sentences 
are for example: 

A = "Paris is the capital of France" 

B = "mice chase elephants" 

Such atomic components (of possibly more complex sentences) can be either 
~rue or false. (In our understanding of the world, A is true but B is false.) 
The subject of propositional logic is to declare formally how such "truth 
values" of the atomic components extend to a truth value of a more complex 
structure, such as 

A and B. 

(For the above example, we know that  A and B is false because B is 
already false.) 

That  is, we are interested in how the notion of a truth value extends 
from simple objects to more complex objects. In these investigations, we 
ignore what the underlying meaning of an atomic sentence is; our whole 
interest is concentrated on the truth value of the sentence. 



4 CHAPTER 1. PROPOSITIONAL LOGIC 

For example, if 

A - "Charlie is getting s i c k "  

B = "Charlie is consulting a doctor" 

then there is a big difference in colloquial language whether we say "A and B" 
or "B and A". 

In the following definition we ignore such aspects occurring in n a t u r a l  
language. All atomic sentences (now called atomic formulas) are thought 
of being enumerated as A1,A2,A3,. . .  ignoring the possible "meanings" of 
such formulas. 

Def in i t ion  (syntax of propositional logic) 

An atomic formula has the form Ai where i = 1, 2, 3, . . . .  
defined by the following inductive process: 

Formulas are 

1. All atomic formulas are formulas. 

2. For every formula F, -~F is a formula. 

3. For all formulas F and G, also (F  V G) and (F A G) are formulas. 

A formula of the form -~F is called negation of F. A formula of the form 
(F  V G) is called disjunction of F and G, and (F  A G) is the conjunction 
of F and G. Any formula F which occurs in another formula G is called a 
subformula of G. 

E x a m p l e :  
F are: 

F = -~((A5 A A6) V -~A3) is a formula, and all subformulas of 

F, ((A~ A A6) V ~A3), (As A A6), As, A6, --A3, A3 

We introduce the following abbreviations which allow a more succinct rep- 
resentation of formulas: 

A, B, C , . . .  instead of A1, A2, An, . . .  

(/'1 ~ / ' 2 )  instead of (~F1 V F2) 
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(F1 *-+ F2) instead of 
n 

( V F , )  instead of 
i=1 

n 

( A F i )  instead of 
i=1 

((F, A F2) v (-~F1 A -~F2)) 

( . . .  ((F~ v F2) v F3) V .. �9 V P . )  

( . . .  ( ( F 1 A  F2) A F3) A �9 �9 �9 A Fn)  

Here, F1, F ~ , . . .  can be arbitrary formulas. In particular, that  means tha t  
(A ~-~ E) is an abbreviation for the formula 

((A A E) V (-~A A-~E)) 

which, again, is an abbreviation for 

((A1 A As) V (-'A1 A- 'As)) .  

Notice that  formulas are nothing else but strings of symbols (i.e. syntac- 
tical objects). They do not have a "content" or "meaning" at the moment.  
Therefore, it would be incorrect (or premature) to read A as "and", and Y 
as "or". Better  would be, say, "wedge" and "vee". 

Formulas - and the components occurring in formulas - obtain an as- 
sociated "meaning" by the following definition. 

D e f i n i t i o n  (semantics of propositional logic) 

The elements of the set {0, 1} are called truth values. An assignment is a 
function .A �9 D ~ {0, 1}, where D is any subset of the atomic formulas. 
Given an assignment .A, we extend it to a function A' " E --* {0, 1}, where 
E 2) D is the set of formulas that  can be built up using only the atomic 
formulas from D. 

1. For every atomic formula Ai E D, .A'(Ai) - .A(Ai). 

1, if A ' ( F ) -  1 and A ' ( G ) -  1 
2. ~4'((F A G)) - 0, otherwise 

1, i f A ' ( F ) -  1 or A ' ( G ) -  1 
3. , 4 ' ( (F  V G)) - 0, otherwise 

1, i f A ' ( F )  - 0 
4 . . A ' ( - , F ) -  O, otherwise 
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Since ,4' is an extension of ,4 (A and ,4' agree on D),  from now on, we 
drop the distinction between ,4 and ,4' and just  write ,4. (The reason for 
this temporary distinction was to be able to define .4.' formally.) 

E x a m p l e :  Let ~4(A) - 1, ~t(B) - 1 and ~t(C) - 0 .  Then we obtain: 

.A(~( (A  A B)  V C))  - O, 

_{0, 
1, 

__ { 0, 
1, 

__ { 0, 
1, 

= { 0, 
1, 

= 0 

if .A(((A A B)  V C)) - 0 
otherwise 

if ~ ( ( ( A  A B) V C)) - 1 
otherwise 

if ~ ( ( A  A B)) -- 1 or .A.(C) - 1 

otherwise 

if A((A A B)) -- 1 ( because A(C)  - 0 ) 
otherwise 

if A ( A ) -  1 and , 4 ( B ) -  1 
otherwise 

The (semantic) effect of the "operators" A, V, 
following tables. 

-~ can be described by the 

.A(F) ,4(G) 
0 0 
0 1 
1 0 
1 1 

,4((F ^ G)) 

,4(F)   t(C) v O)) 

,4 (F)  .A(-~F) 
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Using these tables, it is easy to determine the truth value of a formula F, 
once an assignment of the variables occurring in F is given. As an example, 
we consider again the formula F - -~((A A B) V C), and we represent the 
way F is built up by its subformulas as a tree: 

The truth value of F is obtainable by marking all leaves of this tree with the 
truth values given by the assignment ,4, and then determining the values of 
the inner nodes according to the above tables. The mark at the root gives 
the truth value of F under the given assignment A. 

0 
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Exercise  2: Find a formula F containing the three atomic formulas A, B, 
and C with the following property: For every assignment .A.: {A, B, C} ---, 
{0, 1}, changing any of the values .A.(A), ~t(B), .A(C) also changes .#t(F). 

From the definition of M(F) it can be seen that the symbol "A" is 
intended to model the spoken word "and", and similarly, "v" models "or", 
and "-." models "not". If we add the symbols "--," and "~-," (which we 
introduced as syntactical abbreviations), then "--," stands for "implies" or 
"if . . . then",  and " ~ "  stands for "if and only if". 

To make the evaluation easier of formulas which contain the (abbrevi- 
ation) symbols --, or ~-,, we introduce tables for these symbols as above. 

0 0 
0 1 
1 0 
1 1 

.A((F --. G)) .A(F) .A(G) 
1 0 0 
1 0 1 
0 1 0 
1 1 1 

G)) 

R e m a r k  (induction on the formula structure) 

The definition of formulas is an inductive definition: First, the simplest 
formulas are defined (the atomic formulas), then it is shown how more 
complicated formulas can be built up from simpler ones. The definition of 
,4(F) is also by induction on the formula structure. This induction principle 
can also be used in proofs: If some statement 8 is to be proved for every 

formula F, then it suffices to perform the following two steps. 

1. (Induction Base) Show that S holds for every atomic formula Ai. 

2. (InducZion SZep) Show under the (induction) hypothesis that S holds 
for (arbitrary, but fixed) formulas F and G, it follows that S also 
hom  (F ̂  C), and (F V C). 
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D e f i n i t i o n  (suitable assignment, model, satisfiable, valid) 

Let F be a formula and let .A be an assignment, i.e. a mapping from a 
subset of {A1,A2, . . . }  to {0, 1}. If .A is defined for every atomic formula 
Ai occurring in F,  then A is called suitable for F.  

If .A is suitable for F,  and if A(F)  = 1, then we write .A ~ F.  In this case 
we say F holds under the assignment ,4, or .A is a model for F.  Otherwise 
we write .A ~ F ,  and say: under the assignment .A, F does not hold, or .A 
is not a model for F.  

A formula F is satisfiable if F has at least one model, otherwise F is called 
unsatisfiable or contradictory. Similary, a set M of formulas is satisfiable 
if there exists an assignment which is a model for every formula F in M.  
(Note that  this implies that  this assignment is suitable for every formula in 
M). 
A formula F is called valid (or a tautology) if every suitable assignment for 
F is a model for F.  In this case we write ~ F,  and otherwise ~ F.  

T h e o r e m  

A formula F is a tautology if and only if -~F is unsatisfiable. 

P r o o f :  

F is a tautology iff 

iff 

iff 

iff 

every suitable assignment for F is a model for F 

every suitable assignment for F (hence also for 

--,F) is not a model for --,F 

--F does not have a model 

--F is unsatisfiable. 

The step from F to - ,F  (or vice versa) can be visualized by the following 
"mirror principle": 
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I 
I 

all formulas in propositional logic 

valid 
formulas 

~G 

satisfiable, 
but non-valid 

formulas 

I 
F I -~F 

I 
I 

unsatis- 
fiable 

formulas 

G 

Application of the negation symbol means a reflection at the broken line. 
Hence a valid formula becomes an unsatisfiable formula (and vice versa), 
and a formula being satisfiable, but non-valid, again becomes a formula of 
this type. 

Exe rc i se  3: A formula G is called a consequence of a set of formulas 
{Fx, F2 , . . . ,Fk}  if for every assignment .A which is suitable for each of 
F1, F2, �9 �9 Fk and G, it follows that whenever ,4 is a model for $'1, F2, �9 �9 Fk, 
then it is also a model for G. 

Show that the following assertions are equivalent: 

1. G is a consequence  of {$'1, F 2 , . . . ,  Fk}. 

2. ((]k~=l Fi) ~ G) is a tautology. 

3. ((A~=x Fi) A--G) is unsatisfiable. 

Exerc i se  4: What  is wrong with the following argument? 

"If I run the 100 meter race faster than 10.0 seconds, I will be admitted to 
the Olympic games. Since I am not running the 100 meter race faster than 
10.0 seconds, I will not be admitted to the Olympic games." 

The truth value of a formula obviously depends only on the truth assign- 
ments to the atomic formulas which occur in the formula. More formally, if 
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two suitable assignments ,4 and ,4' for F agree on all the atomic formulas 
which occur in F,  then A ( F )  - ,4 ' (F) .  (A formal proof of this fact would 
be by induction on the formula structure of F) .  

The conclusion we can draw is, for determining whether a given formula 
F is satisfiable or valid, it suffices to test finitely many different assignments 
for the atomic formulas occuring in F.  If F contains the atomic formulas 
A i , . . . ,  A , ,  then there are exactly 2 n different assignments (because there 
are 2" different functions from {A i , . . . ,  A , }  to {0, 1}). This test can be 
done systematically by ~ru~h-tables: 

A i  A2 ""  A . - i  A .  F 
Ai: 0 0 0 0 A i ( F )  
~2" 0 0 0 1 A2(F) 

�9 ~ �9 

�9 ~ . 

A2-" 1 1 1 1 ~ 2 - ( F )  

It is clear now, that  F is satisfiable if and only if the sequence of obtained 
t ru th  values for F (the column below F)  contains a 1, and F is valid if and 
only if the sequence consists only of l 's. 

E x a m p l e :  Let F -- (-~A --* (A --, B)). 

It is more convenient to have an extra column for every subformula occuring 
in F .  Hence we obtain 

A B -~A ( A - , B )  
0 0 1 1 
0 1 1 1 
1 0 0 0 
1 1 0 1 

F 

The column below F consists only of l 's, therefore F is a tautology. 
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R e m a r k :  The truth-table method allows us to test formulas for satisfiabil- 
ity or for validity in a systematic, i.e. algorithmic way. But note that the 
expense of this algorithm is immense: For a formula containing n atomic 
formulas, 2 n rows of the truth-table have to be evaluated. For a formula 
with (only) 100 atomic formulas, the fastest existing computers would be 
busy for thousands of years to determine whether the formula is, say, sat- 
isfiable. (Find out how long 21~176 microseconds a r e -  supposing that one 
line of the truth-table can be constructed in 1 microsecond). This expo- 
nential behavior regarding the running time of potential algorithms for the 
satisfiability problem in propositional logic does not seem to be improv- 
able (except for special cases, see Section 1.3). The satisfiability problem 
is ~NP-complete'.  (This notion cannot be explained here, see any book on 
Complexity Theory). 

Exerc i se  5: Show that a formula F of the form 

k 

c,) 
i - -1  

is satisfiable if and only if the set of formulas M - {G1, 
able. Is this also true for formulas F of the form 

k 

- ( V  G,) ? 
i = l  

, Gk } is satisfi- 

E x e r c i s e  6: How many different formulas F with the atomic formulas 
A 1 , . . . , A ,  and with different truth value sequences (columns below F)  do 
there exist? 

Exe rc i se  7: Give an example of a 3-element set M so that M is not 
satisfiable, but every 2-element subset of M is satisfiable. Generalize your 
example to n-element sets. 

Exercise 8: Is the following infinite set of formulas satisfiable? 

M - {A~ v A~,-~A~ v -~A3, A3 v A4,-~A4 v -~As,...} 
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Exerc i se  9: Construct truth-tables for each of the following formulas. 

((A A B) A (-,B V C)) 

-,(-,A v -,(-,B v-,A)) 

(A ~ ( B  ~ C ) )  

Exerc i se  10: Prove or give a counter example: 

(a) If (F  ---, G) is valid and F is valid, then G is valid. 

(b) If (F  --, G) is satisfiable and F is satisfiable, then G is satisfi- 
able. 

(c) If (F  ~ G) is valid and F satisfiable, then G is satisfiable. 

Exerc i se  11: 

(a) Everybody having a musical ear is able to sing properly. 

(b) Nobody is a real musician if he cannot electrify his audience. 

(c) Nobody who does not have a musical ear can electrify his audi- 
ence. 

(d) Nobody, except a real musician, can compose a symphony. 

Question: Which properties does a person have who has composed a sym- 
phony? 

Formalize these assertions, and use truth-tables! 

Exerc i se  12: Assume (F  --4 G) is a tautology such that F and G do not 
share a common atomic formula. Show that either F is unsatisfiable or 
that G is a tautology (or both). 

Show that the assumption about not sharing atomic formulas is necessary. 
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Exerc i se  13: (Craig's interpolation theorem) 

Let ~ (F  --+ G) and let F and G have at least one atomic formula in 
common. Prove that there exists a formula H which is only built up from 
atomic formulas occurring in both F and G such that ~ (F  --+ H) and 
~ ( H  --+ G). 

Hint: Use induction on the number of atomic formulas that occur in F, 
but not in G. Alternatively, construct a truth-table for H. 

1.2 Equiva lence  and Nor mal  Forms 

From the way we assign truth values to formulas, we know that (F  V G) 
and (G V F) "mean the same thing" - but syntactically the two formulas 
are different objects. We express this semantic equality or equivalence with 
the following definition. 

Definit ion 

Two formulas F and G are (semantically) equivalent if for every assignment 
A that is suitable for both F and G, A(F)  = A(G). Symbolically we denote 
this by F = G. 

R e m a r k :  Formulas containing different sets of atomic formulas can be 
equivalent (for example, tautologies). 

T h e o r e m  (substitution theorem) 

Let F and G be equivalent formulas. Let H be a formula with an occurrence 
of F as subformula. Then H is equivalent to H'  where H'  is a formula 
obtained from H by substituting an occurrence of subformula F by G. 

P r o o f  (by induction on the formula structure of H): 

Induction Base: If H is an atomic formula with an occurrence of F as 
subformula, then H = F. Therefore, H'  - G which is equivalent to H. 

Induction Step: Let H be a non-atomic formula. In the case that the 
subformula F of H is H itself, the same argument as in the induction base 
applies. So suppose that F -7(: H. 
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Case 1: H has the form --,H1. 
The formula F is a subformula of H1. Therefore, by induction hypothesis, 
H1 is equivalent to HI where HI is obtained from HI by substituting F by 
G. Thus we have H' - - - ,HI .  By the (semantic) definition of "--," it follows 
that H and H' are equivalent. 

Case 2: H has the form (H1 V H2). 
Then the occurrence of F in H is either in H1 or in H2. We assume the 
former case in the following (the latter case is analogous). Then again, by 
induction hypothesis, Hx is equivalent to HI where HI is obtained from 
HI by substituting F by G. Using the semantic definition of "V" it is clear 
that H - ( H ~ V H 2 ) - H  ~. 

Case 3: H has the form (Hx A H2). 
This case is proved analogous to Case 2. �9 

Exercise  14: Let F - G. Show: if F '  and G' are obtained from F 
respectively G by substituting all occurrences of V by A (and vice versa) 
then F '  = G'. 

T h e o r e m  

For all formulas F, G, and H, the following equivalences hold. 

( F A F )  _ F 
( F V F )  - F (Idempotency) 

( F A G )  -- ( G A F )  
(F V G) - (G V F) (Commutativity) 

((F A G) A H) - (F A (G A H)) 
((F V G) V H) - (F V (G V H)) (Associativity) 

(F A (F V G)) - r 
(F V (F A G)) - r (Absorption) 

(F^(Gv H)) 
(FV(GAH)) 

- ( ( F A G )  V ( F A H ) )  
-- ( ( F V G )  A ( F V H ) )  (Distributivity) 

-',-,F - F (Double Negation) 
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-~(F ̂  G) 
-~(F v G) 

(Fv G) 
( F A G )  

(Fv G) 
( F A G )  

- (-~F v-~G) 
---- (-~F A-~G) (deMorgan's Laws) 

= F, if F is a tautology 
- G, if F is a tautology 

~_ G, if F is unsatisfiable 
= F, if F is unsatisfiable 

(Tautology Laws) 

(Unsatisfiability Laws) 

Proof." All equivalences can be shown easily using the semantic definition 
of propositional logic. Also, we can verify them using truth tables. As an 
example we show this for the first absorption law. 

~ ( F )  ,~(C) 
0 0 
0 1 
1 0 
1 1 

~((F v G)) ~ ( ( F  ^ (F v G))) 

The first column and the fourth column coincide. Therefore, it follows 

(FA(FVG))- F. 

Example:  Using the above equivalences and the substitution theorem (ST) 
we can prove that 

((A V (B V C)) ^ (C V ~A)) = ((B ^ ~A) V C) 

because we have 

((A v (B v C)) ^ (C v -~A)) 
= (((A v B) v C) ^ (C v ~A)) 

= ((C v (A v B)) ^ (C v ~A)) 

- (C v ((A v B) ^ ~A)) 

- (C v (~A ^ (A v B)) 

= ( C V ( ( ~ A A A )  V ( ~ A A B ) )  

= ( C V ( ~ A A B ) )  

=_ (C V (B A~A) )  

- ((B ^-~A) v C) 

(Associativity and ST) 

(Commutativity and ST) 

(Distributivity) 

(Commutativity und ST) 

(Distributivity and ST) 

(Unsatisfiability Law and ST) 

(Commutativity and ST) 

(Commutativity) 
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R e m a r k :  The associativity law gives us the justification for a certain free- 
dom in writing down formulas. For example, the notation 

F - - A A B A C A D  

refers to an arbitrary formula from the following list. 

(((A A B) A C) A D) 

( (AAB)  A(CAD))  

((A A (B A C)) A D) 

(A A ((B A C) A D)) 

(A A (B A (C A D))) 

Since all these formulas are equivalent to each other, from the semantic 
viewpoint it does not matter which of the formulas is referred to. 

Exerc i se  15: Show that for every formula F there is an equivalent formula 
G which contains only the operators -~ and ---,. Show that there exists a 
formula having no equivalent one containing only the operators v, A and 
- - - 4 .  

Exerc i se  16: Show (by induction) the following generalizations of deMor- 
gan'8 law and of the distributivity laws. 

n n 

i--1 i = l  
n n 

--,(A ~',) = (V-,~',) 
i = l  i = l  

n ~ n 

( (V  F,)^ ( V  ~,)) - ( V ( V  (F,,, a~))) 
i = l  j = l  /=1  j = l  

Etlt n ~ n 

r162 ~,)v cA G,)) - cAcA (~, v c~))) 
i = l  j = l  i = l  j = l  

Exerc i se  17: Using the equivalences of the theorem, show that the formula 
((A v -~(B A A)) A (C V (D A C))) is equivalent to (C V D). 
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E x e r c i s e  18: Formalize the following statements as formulas, and then 
show that  they are equivalent. 

(a) "If the child has temperature or has a bad cough and we reach 
the doctor, then we call him." 

(b) "If the child has temperature,  then we call the doctor provided 
we reach him, and, if we reach the doctor then we call him, if 
the child has a bad cough. 

In the following we show that  every f o r m u l a -  whether it is built up in 
a complicated way or not - c a n  be transformed in an equivalent one which 
has a certain normal form. Even more, the above equivalences and the 
substi tution theorem suffice for proving this. 

D e f i n i t i o n  (normal forms) 

A literal is an atomic formula or the negation of an atomic formula. (In 
the former case the literal is called positive and negative in the latter.) 

A formula F is in conjunctive normal form ( C N F )  if it is a conjunction of 
disjunctions of literals, i.e. 

n rni  

F - (A (V L,,j)), 
i = l  j = l  

where Lid 6 {A1, A2,. . .}  U {'~A1,-~A2,...} 

A formula F is in disjunctive normal form ( D N F )  if it is a disjunction of 
conjunctions of literals, i.e. 

n ~'ni 

F - ( V ( A  L,,j)), 
i = l  j = l  

where Lid 6 {A1, A2, . . .}  U {-~A1,-~A2,...} 
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T h e o r e m  

For every formula F there is an equivalent formula /71 in C N F  and an 
equivalent formula F2 in D NF.  

P r o o f  (by induction on the formula structure of F):  

Induction Base: If F is an atomic formula, then F is already in C N F  as 
well as in D NF .  

Induction Step: We distinguish between 3 cases. 

Case 1: F has the form F = -~G. 
Then, by induction hypothesis, there are formulas G1 in C N F  and G2 in 
D N F  that  are equivalent to G. Let 

n m i  

G,-  ( A ( V  L,,j)). 
i : 1  j = l  

Application of deMorgan's law to -~G1 (in the generalized form, see Exercise 
16) yields 

F - ( V - ~ (  L,,~)), 
i--1 j - - 1  

and finally, 
n mi  

F- (V(A -~L,,i)) 
i = 1  j : l  

which, by the double negation law, becomes 

n r n i  

F = ( V ( A  L,,~)) 
i--1 j : l  

Ak 
where L i d -  ~Ak  

if Li,j - -~Ak 

if Lid -- Ak . 

Therefore, we have obtained a formula in D N F  equivalent to F .  Analo- 
gously one can obtain from G~ a formula in C N F  equivalent to F.  

Case 2: F has the form F = (G V H).  
By induction hypothesis, there are equivalent formulas to G and to H in 
D N F  and in C N F .  To obtain a formula in D N F  equivalent to F,  we simply 
combine the D N F  formulas for G and H by v (and then use associativity.) 
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To obtain a formula in C N F  equivalent to F,  we first choose formulas 
Gi and Hx in C N F  equivalent to G and H. Let 

e l  - 

H 1 - 

n 

(A c:) 
i --1 

k 

(A "1) 
I--1 

where G~ and HI are disjunctions of literals. Using the generalized distribu- 
tivity law (Exercise 16), we obtain 

n k 

F = ( A ( A (G: v Hf))) 
i = 1  1=1 

Using associativity, the get the form 

n .k  

F-(Ar') 
i = l  

where the /7/' are disjunctions of literals. Possible double occurrences of 
literals within a disjunction, or double occurrences of disjunctions can be 
eliminated using the idempotency laws. Also, if some of the disjunctions are 
tautologies (because they contain a literal together with its complement) 
then these disjunctions can be eliminated by the tautology law. This ulti- 
mately gives a formula in C N F .  

Case 3: F has the form F = (G A H) 
This case is analogous to Case 2. �9 

The induction proof of the previous theorem hides a recursive algorithm 
to produce equivalent D N F  and C N F  formulas for a given formula. A 
more direct method to transform a formula into equivalent, say, C N F  is 
the following. 

Given: a formula F.  

1. Substitute in F every occurrence of a subformula of the 
form 

-~-~G by G ,  

--,(G A H) by (-~G V --,H) , 

-~(G V H) by (-~GA-~H),  

until no such subformulas occur. 
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2. Substitute in F each occurrence of a subformula of the 
form 

( F V ( G A H ) )  by 

( ( F A G ) V H )  by 

( (FVG)  A ( F V H ) )  , 

((F V H) A (G V H) , 

until no such subformulas occur. 

The resulting formula is in C N F  (it still might contain superfluous, but 
permissible occurrences of tautologies). 

If a truth-table of a formula F is given or has been constructed, then there 
is another method to produce an equivalent formula in D N F  or C N F .  

To obtain an equivalent formula in D N F  proceed as follows. Every line 
of the truth-table with the truth value 1 gives rise to a conjunction. The 
literals occurring in this conjunction are determined as follows: If for the 
assignment .A that  corresponds to this line we have .A(Ai) = 1 then Ai is 
inserted as literal, otherwise -,Ai. 

To obtain a formula in C N F  equivalent to the given formula F with its 
truth-table,  one has to interchange the roles of 0 and 1, and of disjunction 
and conjunction in the above instruction. 

E x a m p l e :  A formula F is given with the following truth-table. 

A B C F 
0 0 1 
0 1 0 
1 0 0 
1 1 0 
0 0 1 
0 1 1 
1 0 0 
1 1 0 
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Then we obtain immediately an equivalent formula in D N F  

(-~A A ~B A -~C) v (A ^ ~B ^ -~c) v (A A -~B A C), 

and also a formula in C N F  

(A v B v -~c) A (A v -~B v C)A 
(.,4 v ~B v --,c) A (--,A v ~B v c) A (--,.,4 v ~B v ~ c ) .  

Exerc i se  19: Given is the following formula 

((-~A --, B) v ((n ^ - , c )  .-, B) ) .  

Using any of the above methods, construct an equivalent formula in D N F  
and an equivalent one in C N F .  

Observe that the formulas in D N F  or C N F  that are produced by the 
above methods are not necessarily the shortest possible ones. This problem, 
namely producing equivalent formulas in D N F  or C N F  that  are as short 
as possible is interesting in digital circuit design. The shorter the formula, 
the fewer gates are needed for the circuit which realizes this formula. These 
issues are not the theme of this presentation. 

Observe also that all the algorithms presented for producing D N F  or 
C N F  might produce an exponential "blow up" in the formula size. This 
blow up is caused by the applications of the distributive law. Each ap- 
plication roughly doubles the formula size. A formula with a short D N F  
presentation in general has a long C N F  presentation and vice versa. 

Exerc i se  20: Show that for every formula F there exists a formula G 
in C N F  which can be constructed efficiently from F and has at most 3 
literals per conjunction such that F is satisfiable if and only if G is satisfi- 
able. (Note: it is not equivalence between F and G that is claimed here.) 
Further, the size of G is linear in the size of F.  

Hint: The atomic formulas of G consist of those of F plus additional 
atomic formulas. These additional atomic formulas correspond to the inner 
nodes of the "structure tree" of F.  



1.3. HORN FORMULAS 23 

In this situation, the formula G would contain a subformula (transformed 
into C N F )  of the form 

�9 . .  A (A ( B  A c ) )  A . . .  

The reader i8 invited to complete the details. 

1.3 H o r n  F o r m u l a s  

An important special case of C N F  formulas which often occurs in practical 
applications are the Horn formulas (named after the logician Alfred Horn.) 

Definition (Horn formula) 

A formula F in C N F  is a Horn formula if every disjunction in F contains 
at most one positive literal. 

Example: 

F - (A V -~B) A (~C V -~A V D) A (-~A V -~B) A D A -~E 

G - (A V ~B) A (C V ~A V D). 

F is a Horn formula and G is not. 

Horn formulas can be (equivalently) rewritten in a more intuitive way, 
namely as implications. (We call this the procedural reading of Horn for- 
mulas.) In the above example, F can be rewritten as 

F = (B ~ A) A (C AA ~ D) A (A A B ~ 0) A (1 ---. D) A (E- - ,  0). 
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Here, 0 stands for an arbitrary unsatisfiable formula and 1 for an arbitrary 
tautology. It is easy to check that this equivalence really holds. The general 
rule is this: write the negative literals to the left of the implication sign (and 
a 1 if there is no negative literal), and write the positive literal (if any) at 
the right of the implication sign (and a 0 if there is no positive literal). Such 
an implication says whenever the premises are satisfied, then the conclusion 
must be satisfied (and if the conclusion is 0, there is a contradiction). This 
informal argument will be made more formal in the following theorem. 

A general theme of this book is the search for efficient algorithms which 
decide satisfiability (or validity) of formulas. Indeed, it is enough to have a 
test for unsatisfiability because a formula is valid if and only if its negation 
is unsatisfiable (cf. Exercise 3). 

Using truth-tables, it is always possible to find out whether a formula 
is satisfiable or unsatisfiable. On the other hand, we have observed already 
that  the expense of doing this is enormous: an algorithm based on con- 
structing the full truth-table of a formula necessarily runs in exponential 
time. 

In contrast, for Horn formulas there exists an efficient test for satisfia- 
bility which works as follows. 

Instance: a Horn formula F 

1. Mark every occurrence of an atomic formula A in F if there is a 
subformula of the form (1 --~ A) in F. 

2. whi le  there is a subformula G in F of the form (A1 A . . - A  A,~ 
--, B) or of the form (A1 A . . .  A An ~ 0), n > 1, where 
A 1 , . . . ,  A~ are already marked (and B is not yet marked) 
do 

if G is of the first form 

t h e n  mark every occurrence of B 

else output "unsatisfiable" and ha l t ;  

3. Output  "satisfiable" and halt. (The satisfying assignment is given by 
the marking: .A(Ai) = 1 if and only if Ai has a mark.) 
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T h e o r e m  

The above marking algorithm is correct (for Horn formulas as input), and 
stops always after at most n many applications of the whi le  loop (n - 
number of atomic formulas in F.)  

Proof.- It is clear that the algorithm cannot mark more atomic formulas 
than there exist. Therefore, the output "satisfiable" or "unsatisfiable" is 
reached after at most n applications of the whi le  loop. 

Regarding the correctness of the algorithm, we observe that any model 
.A for the input formula f (if there is any) must satisfy .A.(Ai) = 1, for all 
atomic formulas Ai that are marked during application of the algorithm. 
This is immediate for the marked atomic formulas in step 1 of the algorithm 
because a C N F  formula F obtains the truth value 1 only if every disjunc- 
tion in F gets the value 1. If such a disjunction, as in step 1, has the form 
(1 --4 A), then A necessarily has to receive the assignment 1. Therefore, 
in step 2, it is necessary to mark (i.e. to assign 1 to) an atomic formula 
B provided (At A . - .  A An --* B) occurs in F and A1 , . . .An  are already 
marked. Also, the decision for "unsatisfiable" is correct in the case that 
(At A . . -  A An --4 0) occurs in F and A t , . . . A n  are already marked. 

If the marking process successfully ends and step 3 is reached, then the 
formula F is satisfiable and the marking provides a model for F.  To see 
this, let G be an arbitrary disjunction in F.  If G is an atomic formula, then 
.A(G) - 1 is already guaranteed by step 1 of the algorithm. If G has the 
form (A1A. . .AA,  ---. B) (i.e., G = (~A, V.. .V-~A, V B)), then either every 
Ai is marked by 1, and by step 2 of the algorithm, also B is marked, or for 
at least one of the A~, .A(A~) - 0. In both cases we get .A(G) - 1. If G has 
the form (A1 A . - .  A An ---* 0) (i.e., G = (~A1 V . - .  V "~An)), then, by the 
assumption that step 3 was reached, for at least one of the Ai, .A(Ai) = O. 
Therefore, also in this case, ~t(G) = 1. [ ]  

Observe that the proof shows that the model .A obtained by the marking is 
actually the smallest model for the formula F.  That  is, for every model .A t 
and all atomic formulas B occuring in F,  .A(B) < .At(B). (Here, the order 
0 < 1 is assumed.) 

Another consequence of the proof is that every Horn formula is satisfi- 
able if it does not contain a subformula of the form (A1 A - . .  A An ---* 0). 
Exactly these subformulas possibly cause the above algorithm to halt with 
the output "unsatisfiable'. Further, a Horn formula is satisfiable if it does 
not contain a subformula of the form (1 ---, A). In this case the whi le  loop 
in step 2 will not be entered, and the control immediately reaches step 3. 
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Exerc i se  21: Apply the above marking algorithm to the Horn formula 

F = (-~A V -~B V -~D) ^ -~E ^ (-~C V A) ^ C ^ B ^ (-~G V D) ^ G. 

(Notice that a truth-table for this formula would have 26 = 64 lines.) 

Exerc i se  22: Give an example of a formula which does not have an equiv- 
alent Horn formula. Why is this so? 

Exerc i se  23: Suppose we have the apparatuses available to perform the 
following chemical reactions. 

M g O + H 2  ---* M g + H 2 0  

C + O 2  --* CO2 

H 2 0 + C O 2  ---, H2CO3 

Further, our lab has the following basic materials available: MgO, H2, 02 
and C. Prove (by an appropriate application of the Horn formula algorithm) 
that under these circumstances it is possible to produce H2CO3. 

1.4 T h e  C o m p a c t n e s s  T h e o r e m  

In this section an important theorem is proved. Perhaps, the reader will 
not realize its importance at this time. But in Chapter 2 this theorem will 
play an important role. 

Recall that a set M of formulas is, by definition, satisfiable if there is 
an assignment A such that for every F E M, .A(F) = 1. We call such an 
assignment a model for M. 

C o m p a c t n e s s  T h e o r e m  

A set M of formulas is satisfiable if and only if every finite subset of M is 
satisfiable. 

Proof:  Every model for M is also a model for every subset of M, in 
particular, for every finite subset of M. Therefore the direction from right 
to left is immediate. 
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Conversely, suppose that  every finite subset of M is satisfiable, i.e. has 
a model. Our task is to construct one uniform model for M from this 
variety of models. For every n _> 1 let Mn be the set of formulas in M 
that  contains only the atomic formulas A 1 , . . . ,  An. Although M,, might 
be an infinite set, it contains at most 22~ many formulas with different 
truth tables. (Note that  there are exactly 22~ many different t ruth tables 
with the atomic formulas A1, . . . ,An) .  Therefore, there is a collection of 
formulas { F 1 , . . . ,  Fk } C Mn,  k _< 22", such that  for every F E Mn,  F - Fi 
for some i < k. Hence, every model for { F 1 , . . . ,  Fk} is also a model for 
Mn. By assumption, { F 1 , . . . ,  Fk} possesses a model because it is a finite 
subset of M. Call this model ~ .  We further note that  ~ is also a model 
for M 1 , . . . ,  Mn-x  because M1 C . . .  C Mn-1  C Mn. 

We construct the desired model .4 for M in stages, such that  we start 
with , 4 -  0 in stage 0 and we declare in stage n how ,4 is defined on An. 
Furthermore, in the construction appears an index set I which is initially 
set to IN, the set of all natural  numbers, and modified at each stage. We 
find it convenient to use in some places the set theoretic notion for function 
and write (A, ,  1) E ,4 instead .A(An) - 1. The stage construction follows. 

S t a g e  0: ~ := @ ; 
/ : = I N ;  

S t a g e  n > 0" if  there are infinitely many indices i E I with 
. A { ( A , ) -  1 t h e n  

b e g i n  
.4 : =  x u { ( A . ,  ; 
I := I -  { i [ J t { (A , )  # 1} 

e n d  
else  

b e g i n  
.,4 :-- .A U {(An, 0)} ; 
I := I -  {iIA~(A.) # 0} 

end .  

Since in each stage n the assignment ,4 is extended by (An, 0) or by (An, 1), 
but not both, ,4 is a well-defined function with domain {A1, A2, A3, . . .}  and 
range {0, I}. 

We claim that  ,4 is a model for M. Let F be an arbitrary formula in M. 
F contains only finitely many atomic formulas, say, A1, . . .Az .  Therefore, F 
is an element of Mz C Mt+l  C . . .  and each of the assignments .A~, .A~+I,... 
is a model for F .  It can be seen that  the above construction has the property 
that  in each stage, I is "thinned out" because indices are canceled from I, 



28 C H A P T E R  1. P R O P O S I T I O N A L  L O G I C  

but I will never become finite. Therefore, in stage l infinitely many indices 
remain in I, also such indices i with i > I. All these remaining assignments 
A~ agree with each other and with ,4 on {A1, . . . ,Az}.  Hence, ~t(F) - 1. 

m 

Observe that  the above proof is non-constructive.  That  is, the ezistence of 
the model ,4 is shown, but the test in the if  statement cannot be checked in a 
finite amount of time (cf. Section 2.3 about decidability questions.) Rather,  
it is a "mental construction"" either the if  condition or the else condition 
is satisfied, and the construction is supposed to proceed correspondingly, 
but we are not able to implement this process algorithmically. 

Formulated in different terms, the compactness theorem states that  a 
set of formulas M is unsa~isfiable if and only if there exists a f ini te  subset 
of M that  is unsatisfiable. In this form the compactness theorem will be 
used in Chapter 2. To give an understanding of this application in Chapter  
2, suppose the set M can be enumerated by an algorithmic process 

M -  {F~, F2, F3, . . .}, 

that  is, there is an algorithm which, on input n, outputs F,, in finite 
time. To determine whether M is unsatisfiable, we generate successively 
/;'1,/'2, F 3 , . . .  and test each time whether the finite set of formulas gener- 
ated so far is unsatisfiable. If so, we know that  M is unsatisfiable. On the 
other hand, there is no way to confirm satisfiability in a similar manner.  

E x e r c i s e  24" Let M be an infinite set of formulas so that  every finite 
subset of M is satisfiable. Suppose, no formula in M contains the atomic 
formula A723. Therefore suppose, that  none of the assignments .An in the 
above construction is defined on A723. Find the value of ,4(A723) given by 
the above construction. 

E x e r c i s e  25" Prove that  M -  { / '1 , / ' 2 , / ' 3 , . . . }  is satisfiable if and only if 
for infinitely many n, (Ai=l F~) is satisfiable. 

E x e r c i s e  26: A set of formulas M0 is an axiom sys tem for a set of formulas 
M if 

{,4[,4 is model for M0 } = {,41,4 is model for M}.  
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M is called finitely aziomatizable if M has a finite axiom system. Suppose, 
{Fi,  F2, F3 , . . . }  is an axiom system for a set M where for all n > 1, 

(F.+x F.) V= (F. --, F,+x). 

Show that  M is not finitely axiomatizable. 

E x e r c i s e  27: Let L be an arbitrary infinite set of natural  numbers, pre- 
sented in binary notat ion (e.g., the set of prime numbers: L = {10, 11,101, 
111, 1011, . . . } ) . )  Prove there is an infinite sequence of different binary 
numbers wi, w2, w3 , . . ,  such that  wi is prefix of w~+i and also prefix of 
some element of L. 

1.5 R e s o l u t i o n  

Resolution is a simple syntactic transformation applied to formulas. From 
two given formulas in a resolution step (provided resolution is applicable to 
the formulas), a third formula is generated. This new formula can then be 
used in further resolution steps, and so on. 

A collection of such "mechanical" transformation rules we call a calculus. 
Mostly, a calculus (like resolution) has an easy algorithmic description, 
therefore a calculus is particularly qualified for computer implementation.  
In the case of resolution there is just  one rule which is applied over and 
over again until a certain "goal formula" is obtained. 

The definition of a calculus is sensible only if its correctness and its 
completeness can be established (both with respect to the particular task 
for which the calculus is designed). To be more precise in the case of the 
resolution calculus, the task is to prove unsatisfiability of a given formula. 
(Remember that  many other questions about  formulas can be reduced to 
unsatisfiability, cf. Exercise 3.) 

In this case, correctness means that  every formula for which the reso- 
lution calculus claims unsatisfiability indeed is unsatisfiable. Completeness 
means that  for every unsatisfiable formula there is a way to prove this by 
means of the resolution calculus. 
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A general precondition for the application of resolution to a formula is 
that  the formula (or set of formulas) is in C N F .  That  is, if necessary, the 
formula has to be transformed into an equivalent C N F  formula (see also 
Exercise 20.) Let the formula F be 

F - (L, , ,  V . - .  V L , , , , )  A . - .  A (Lk,, V . . . V  Lk,,k) 

where the Li,j are literals, i.e. Li,j E {A1 ,A2 , "  "} U {--A~,--A2,-. "}. For 
the presentation of resolution it is advantageous to represent formulas in 
C N F  as sets of so-called clauses where a clause is a set of literals" 

F = {{LI ,1 , . . . ,L , , ,~ , } , . . . , {Lk ,1 , . . . ,Lk , , , , } }  

In this example, {LI ,1 , . . .  , L I , , , }  is a clause. Hence a clause corresponds 
to a disjunction. A comma separating two literals within a clause can be 
thought  of V, whereas a comma that  separates two clauses corresponds to 

aA .  

The elements in a set do not have an order or priority and multiple 
occurrences of an element "melt" together into a single element. There- 
fore, simplifications s temming from associativity, commutat ivi ty  or idem- 
potency are "automatically" provided by the set notation. The follow- 
ing equivalent C N F  formulas all have the same set presentation, namely 
{{A3},{A1,--,A2}}: 

((A1 V -A2)  A (A3 A A3)) 

( A 3 A ( ~ A 2 V A 1 ) )  

(A3 A ((~A2 V ~A2) V A1)) 

etc. 

To keep notation simple, in the following we use the same letter F to 
represent a C N F  formula, and also its corresponding clause representation. 
Of course, the relationship between clause sets and formulas is not one 
to one, as the above example shows. Furthermore, we apply notions like 
equivalence and satisfiability also to clause sets. 

D e f i n i t i o n  (resolvent) 

Let C1,6'2 and R be clauses. Then R is called a vesolvent of C1 and C2 if 
there is a literal L E Ci such that  L E C2 and R has the form 

R - (C1 - {L})U (C2 - {L}). 



1.5. RESOLUTION 31 

Here, L is defined as 

--  { ~Ai if L - A i  , 
L - -  A i  if L - --,Ai . 

Graphically we denote this situation by the following diagram. 

c%;2 
R 

The above definition also includes the case that R is the empty set (if 
C1 - {L} and (72 - {L} for some literal L.) This empty clause is denoted 
by the special symbol [::l. By definition, the empty clause [] is unsatisfiable. 
Therefore, a clause set which contains [] as an element is unsatisfiable. 

The following are some examples for resolutions. 

{A3, - ~ ~ - ~ A 1 }  

{A3, --,A4, A1} {A~.--,A1} 

{Aa, -,A4, A4} 

Exercise  28: Give the entire list of resolvents which can be generated from 
the set of clauses 

{{A,E,  ~B},  {--,A,B,C}, {--,A,--,D,~E}, {A,D}}.  
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Exercise  29: If R is a resolvent of two Horn clauses, prove that R is a 
Horn clause, too. 

Reso lu t i on  L e m m a  

Let F be a C N F  formula, represented as set of clauses. Let R be a resolvent 
of two clauses C1 and C2 in F. Then, F and F U {R} are equivalent. 

Proof." Let .4 be an assignment that is suitable for F (and also for FU{R}). 
If A ~ F U {R} then immediately, A ~ F. Conversely, suppose A ~ F, 
that is, for all clauses C E F, A ~ C. Assume the resolvent R has the form 
R -  (C1 - {L})U (C2 - {L}) where Ca, C2 E F and L E C1, L E C2. 

Case I: A ~ L. 

Then, by .4 ~ C2 and ,4 ~ L, it follows .4 ~ ((72 - {L}), and therefore 
XbR. 

Case 2:.,4 ~ L. 

Then, by ,4 ~ C1, it follows ,4 ~ (C1 - {i}),  and therefore ,4 ~ R. �9 

Def in i t ion  

Let F be a set of clauses. Then Res(F) is defined as 

Res(F) - F U { R ] R  is a resolvent of two clauses in F}. 

Furthermore, define 

Res~ 

Resn+l(F) 

- F 

- Res(Resr'(F)) f o r n > 0 .  

and finally, let 

n > 0  

Exercise  30: For the following set of clauses, 

F - {{A,-,B, C}, {B, C}, {--,A, C}, {B,--,C}, {--,C}} 



1.5. RESOLUTION 33 

determine Res '~ (F) for n - O, 1, 2. 

E x e r c i s e  31: Prove that  for every finite clause set F there is a k > 0 such 
that  

Resk(F)- Resk+i(F)- . . . -  Res*(F). 

Estimate k (in terms of, e.g., the number of clauses, the maximum size of 
a clause, and and the number of different atomic formulas in F) .  

E x e r c i s e  32: Let F be a set consisting of n clauses that  contains the 
atomic formulas Ai,A~,...  ,An. What is the maximum size of Res*(F)? 

Now we proceed to the proof of correctness and completeness of the reso- 
lution calculus (with respect to unsatisfiability). In this context, resolution 
is called refutation complete. 

R e s o l u t i o n  T h e o r e m  (of propositional logic) 

A clause set F is unsatisfiable if and only if o E Res*(F). 

P r o o f :  Using the compactness theorem, we may assume that  F is finite, 
otherwise we pick an unsatisfiable finite subset of F. 

(Correctness) We need to show that  [] E Res*(F) implies that  F is 
unsatisfiable. From the Resolution Lemma, we obtain 

F -  . . . -  . . .  

Since o is contained in Res*(E), it is contained in Resn+i(F) for some 
n. The empty clause o can only be obtained from two clauses of the 
form {L} and {L}. Therefore, {L}, {L} E Resn (F). Obviously there is no 
assignment which can make all clauses in Resn(F) true, therefore, Res'~(F) 
is unsatisfiable, and by the above equivalence, F is unsatisfiable. 

(Completeness) Suppose that  F is unsatisfiable. We show [] E Res*(E) 
by induction on the number n of different atomic formulas in F. 

Induction Base: If n - 0, then it must be that  F - {o}, and therefore, 
0 E Res*(F). 
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Induction Step: Let n be arbitrary, but fixed. Suppose that for ev- 
ery unsatisfiable set of clauses G containing at most the atomic formulas 
A 1 , . . . , A n ,  [] E Res*(G). Let F be a clause set with the atomic formu- 
las A1, . . .  ,An, An+l. Without loss of generality we may assume that no 
clause contains both An+l and -~An+l (Why?). From F we obtain two 
new clause sets F0 and F1 as follows. F0 results from F by canceling ev- 
ery occurrence of the positive literal An+x within a clause, and for every 
occurrence of the negative literal -'An+l within a clause, the entire clause 
is canceled. Analogously F1 is defined where the roles of An+l and --,An+i 
are interchanged. 

Note that F0 (F1) essentially results from F by fixing the assignment of 
An+l to 0 (to 1, resp.) Therefore, both F0 and F1 are unsatisfiable. Assume 
to the contrary that F0 has a satisfying assignment .A : {A~,. . . ,  An} ---+ 
{0, 1}. Then, A' is a satisfying assignment for F where 

A(B) i f B E { A x , . . . , A n }  
A'(B)  - 0 if B - An+l. 

This contradicts the unsatisfiability of F. Similarly it can be shown that 
F1 is unsatisfiable. 

Therefore, by induction hypothesis, [] E Res*(Fo) and o E Res*(F1). 
This means there is a sequence of clauses C1, C2, . . . ,  Cm such that 

C m  ---- ["], 
and for i = 1 , . . . ,  m, Ci E Fo or Ci is a resolvent of two clauses 
Ca,Cb with a,b < i. 

An analogous sequence CI, C~, . . . ,  C~ exists for F1. Some of the clauses Ci 
were obtained from F by canceling the literal An+l. By restoring the orig- 
inal clauses Ci U {An+l}, and carrying An+l along in the resolution steps, 
we obtain from C1, C2, . . . ,  Cm a new "proof sequence" for F which wit- 
nesses that {A,+~} E Res*(F). Similarly, restoring -~A,+~ in the sequence 
C~, C~, . . . ,  C~ shows that {~A,+~} E Res*(F). 

By a further resolution step, 

{ A , ~ , ,  + 1 } 

the empty clause can be derived, and therefore [] E Res*(F). 
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From the resolution theorem the following algorithm can be derived that  
decides satisfiability for a given input formula in C N F  (or clause set) F 
(cf. Exercise 31). 

Instance: a formula F in C N F  

1. Form a clause set from F (and continue to call it F);  

2. r e p e a t  
G : -  F; 
F := Res(F); 

u n t i l  (o  e F)  or  ( f  = G); 

3. if  [] E F t h e n  "F  is unsatisfiable" 
else "F  is satisfiable"; 

In some cases this algorithm can come up with a decision quite fast, but 
there do exist examples for unsatisfiable formulas where exponentially many 
resolvents have to be generated before the u n t i l  condition is satisfied (cf. 
Urquhart in the references). 

In the following we want to distinguish between the clauses which are 
generated by the algorithm and those clauses thereof which are really rele- 
vant to derive the empty clause. (This might be significantly less clauses.) 
Implicitly, we used the following definition already in the proof of the res- 
olution theorem. 

D e f i n i t i o n  

A derivation (or proo]) of the empty clause from a clause set F is a sequence 
C1, C2,.. . ,  Cm of clauses such that  

Cm is the empty clause, and for every i - 1 , . . . ,  m, Ci either is 
a clause in F or a resolvent of two clauses Ca, Cb with a, b < i. 

Reformulating the resolution theorem, it should be clear that  a clause set 
F is unsatisfiable if and only if a derivation of the empty clause from F 
exists. To prove that  a clause set F is unsatisfiable it is therefore enough 
to present a sequence of clauses according to the above defin~_tion. It is not 
necessary to write down all the clauses in Res*(F). 
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Example :  Let F = {{A, B,- ,C},  {--,A}, {A ,B ,  C}, {A,--,B}}. F is unsat- 
isfiable. This fact is proved by the following derivation C1 , . . . ,  C7 where 

C1 - {A,B,-~C} (clause in F)  
C2 = {A,B,C} (clause in F) 
C3 - {A, B} (resolvent of e l ,  C2) 
C4 - {A, -~B} (clause in F)  
C5 - {A} (resolvent of C3, C4) 
C6 - {--,A} (clause in F)  
C7 - [3 (resolvent of C5, Cs) 

This situation can be visualized by the resolution graph: 

C1 C2 

C3 C4 

Such graphs need not necessarily be trees if the same clause is used in more 
than one resolution step. 

Exerc ise  33: Using resolution, show that A A B A C is a consequence of 
the clause set 

F = {{~A, B}, {~B, C}, {A, ~C}, {A, B, C}}. 

Exercise  34: Using resolution, show that 

F - (-~B A-~C A D) V (~B A ~D) V (C A D) V B 

is a tautology. 
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E x e r c i s e  35: Show that  the following restriction of the resolution calculus 
is complete for the class of Horn. formulas (but not for the general case): 
Derive a resolvent from two clauses C1, C2 only if one of these clauses is a 
unit clause, i.e. it consists of only one literal. 

This resolution restriction has the property that  the resolvents become 
shorter. Therefore, from the completeness of this restriction a similarly 
efficient algorithm for Horn formulas can be derived as the one presented 
in Section 1.3. 

Hint: Show that  the process of the marking algorithm for Horn for- 
mulas from Section 1.3 can be simulated in a certain way by appropriate 
applications of resolution steps with unit clauses. 

Second Hint: This exercise will be solved in Section 2.6. 

Exe rc i s e  36: Let F be a clause set with the atomic formulas A I , . . . ,  A ,  
where each clause contains at most two literals (such clauses are called 
Krom clauses). How large can Res*(F) be at most? (From this exercise it 
follows that  there is an efficient algorithm for determining satisfiability of 
Krom formulas.) 

Exe rc i s e  37: Develop an efficient implementation of the resolution calculus 
which uses the following data  structure: The example clauses 

{A, ~B, C, D}, {A, B}, {-~A,-~B,-~C}, {-~B} 

are represented by the following clause graph, 

['~41 -2,BICID'[ 

! BI 
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where an edge indicates a pair of complementary literals (and therefore 
the possibility of producing a resolvent.) Each edge can give the cause 
for a resolution step. In case a resolution step is performed, a new vertex 
representing the resolvent is generated. The edge connections to this new 
vertex can be read off from the parent vertices. 

Furthermore, it is possible to cancel certain edges from the graph (and 
the necessity to produce the corresponding resolvents) by certain locally 
checkable conditions. For example, both edges between the second and 
third clause can be canceled. Also, under certain conditions, vertices can 
be canceled from the graph, and need not be considered. For example, the 
first vertex can be canceled. 

E x e r c i s e  38: Given is the following resolution graph where C1,... ,67 are 
Horn clauses. 

C1 C2 C3 C4 

Show that  this tree can be made linear, such that the clause C7 can be 
obtained from C1, (72, (73, C4 in the following way 

ell G2 C ~ i ,  

! 
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where {il,i2,i3,i4} = {1,2,3,4} and C',C" are certain suitably chosen 
Horn clauses. 

Exerc i se  39: A clause is called positive (negative) if it contains only pos- 
itive (negative) literals. Show that a clause set is satisfiable if it does not 
contain a positive clause. (The same holds if it does not contain a negative 
clause.) 

Exerc i se  40: Show that the following restriction of resolution is complete" 
A resolvent of two clauses C1,C2 is only produced if one of the parent 
clauses is positive. 

Hint" This exercise is solved in Section 2.6. 

Exerc i se  41: Let F be an unsatisfiable clause set ,  and let G be a minimally 
unsatisfiable subset of F.  (That means that G is unsatisfiable, but every 
proper subset of G is satisfiable.) Show that every derivation of the empty 
clause from F consists of at least I G I -  1 many resolution steps where IGI 
denotes the number of clauses in G. 

R e m a r k :  We have seen that in some special cases the resolution calculus 
leads to an efficient algorithm to determine (un)satisfiablity (cf. Exercises 
35,36). But in the case of arbitrary clause sets, it is possible to exhibit 
unsatisfiable clause sets such that every derivation of the empty clause 
consists of exponentially many resolution steps (cf. Urquhart). That  is, the 
expense of the resolution algorithm is comparable with the expense of the 
truth-table method. Because of the "NP-completeness" of the satisfiability 
problem, there does not seem to exist any significantly faster algorithm. 

Another peculiarity is worth mentioning: Both satisfiability and unsat- 
isfiablity of a given formula F can be expressed by an existential statement. 
By definition, F is satisfiable if there exists a satisfying assignment for F. 
On the other hand, F is unsatisfiable if there exists a resolution derivation 
of the empty clause from F. As discussed above, there is a catch to this 
apparent symmetry. Writing down a resolution proof can be much more 
expensive than writing down a satisfying assignment. (This non-symmetry 
is closely related with the "NP=?co-NP" problem.) 
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P R E D I C A T E  L O G I C  

2.1 F o u n d a t i o n s  

Predicate logic can be understood as an extension of propositional logic. 
The additional new concepts include quantifiers, function symbols and pred- 
icate symbols. These new notions allow us to describe assertions which 
cannot be expressed with the available tools of propositional logic. For ex- 
ample, up to this point it was not possible to express that  certain "objects" 
stand in certain relations, or that  a property holds for all such objects, 
or that  some object with a certain property ezists. Here is a well known 
example from calculus: 

For all ~ > 0 there exists some no, such that  for all n > no, 

The main concepts here are the verbal constructs for all and exists, as well 
as the use of functions (abs, f,  - )  and relations (>, >, <).  

As in propositional logic, we start  by formalizing the syntactic frame- 
work in which we want to discuss formulas in predicate logic. But first we 
need to define the syntax of the so-called terms, since terms occur as parts 
of formulas in predicate logic. 

D e f i n i t i o n  (syntax of predicate logic) 

A variable is of the form x~ where i -  1, 2, 3, . . . .  A predicate symbol is of 

41 
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the form P~ and a function symbol of the form f~ where i =  1, 2, 3 , . . .  and 
k = 0, 1,2, . . . .  Here, i is the distinguishabilily index and k is called the 
arity. In the case of arity 0, we drop the parentheses, and just write pO or 
fo. A function symbol of arity 0 will also be called a constant. Next, we 
define terms by an inductive process as follows. 

1. Each variable is a term. 

2. If f is a function symbol with arity k, and if t l , . . .  ,tk are terms, then 
f ( t l , . . . , t k )  is a term. 

Next, formulas (of predicate logic) are defined inductively as follows. 

1. If P is a predicate symbol with arity k, and if t l , . . .  ,tk are terms, 
then P ( t l , . . . , t k )  is a formula. 

2. For each formula F, -~F is a formula. 

3. For all formulas F and G, (F  A G) and (F  V G) are formulas. 

4. If x is a variable and F is a formula, then 3xF and VxF are formulas. 

Atomic formulas are exactly those formulas built up according to rule 1. If 
F is a formula, and F occurs as part  of the the formula G, then F is called 
a subformula of G. 

All occurrences of a variable in a formula are distinguished into bound 
and free occurrences. An occurrence of the variable x in the formula F 
is bound if x occurs within a subformula of F of the form 3xG or VxG. 
(Hence, the same variable x can occur both free and bound in a formula F,  
see also Exercise 42). 

A formula without occurrence of a free variable is called closed. The 
symbols 3 and V are called quan$ifiers where 3 is the existenlial quanlifier 
and V is the universal quanlifier. The matrix of a formula F,  denoted 
symbolically by F*, is obtained by canceling in F every occurrence of a 
quantifier and the variable that  follows the quantifier. 
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E x a m p l e :  F : (3xlP~(xl, f~(x2)) V-~Vx2P~(x2, ff7(f ~ f~(x3)))) is a for- 
mula. All the subformulas of F are: 

F 

P:(Xl, S~(x2)) 
~w~p:(~,/~(/o,/~(~))) 
w~p2(~, :~(/o,/~ (~))) 
P2(x2, f~(f~ fls (x3))) 

All the terms that  occur in F are: 

Xl 

X2 

f~ (x2) 

f~(ff, f~(~)) 
ff 
:~(~) 
X3 

All occurences of x l in F are bound. The first occurence of x2 is free, all 
others are bound. Further, xa occurs free in F .  Hence, the formula F is 
not closed. The term fo is an example for a constant.  The matr ix  of F is 
the formula 

F* : (P2(x l ,  f~(x2)) V -~P:(x2, f~(f4 ~ f~(x3)))) 

E x e r c i s e  42: Let Free(F) be the set of all variables that  occur free in F .  
Define Free(F) formally (by induction on the term and formula structure). 

Again, we allow the same simplifying notations for formulas as in proposi- 
tional logic. Additionally, we allow the following abbreviations. 
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tt~ V, W~ X~ y~ Z 

a, b, c 

f ,g,h 

P ,Q,R 

always stand for variables. 
always stand for constants. 
stand for function symbols where the arity can 
always be inferred from the context. 
s tand for predicate symbols where the arity 
can always be inferred from the context. 

E x e r c i s e  43: List all subformulas and terms that  occur in the formula 

F = (Q(x) v (3xVy(P(f(x), z) A Q(a)) v VxR(x, z,g(x)))) 

Which subformulas are closed? Determine for each occurrence of a variable 
if it is free or bound. What  is the matr ix of F? 

To interpret  formulas of predicate logic (i.e. to give them a semantics, i.e. 
a "meaning"),  we need to associate functions to the function symbols and 
predicates to the predicate symbols (in both cases, we also have to fix some 
ground set on which the functions and predicates are defined). Furthermore,  
variables that  occur free in a formula need to be interpreted as elements 
of the ground set. If this is done, the formula gets a "meaning", in this 
case, a t ru th  value. This intuitive explanation will be made formal in the 
following definition. 

D e f i n i t i o n  (semantics of predicate logic) 

A structure is a pair A = (UA, IA) where UA is an arbitrary, non-empty 
set and is called the ground set or universe. Further, IA is a mapping tha t  
maps 

�9 each k-ary predicate symbol P to a k-ary predicate on UA (if IA is 
defined on P) .  

�9 each k-ary function symbol f to a k-ary function on UA (if IA is 
defined on f) .  

�9 each variable x to an element of UA (if I~ is defined on x). 
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In other words, the domain of / .4  is a subset of {P~, f~, xi l i - 1, 2, 3 , . . .  
and k - 0, 1 ,2 , . . . } ,  and the range o f / . 4  is a subset of all predicates, 
functions, and single elements of U t .  In the following, we abbreviate the 
notat ion and write p t  instead of I t ( P ) ,  f t  instead of I t ( f ) ,  and x t 
instead of I t  ( x ). 

Let F be a formula and .A = ( U t , / . 4 )  be a structure.  J t  is called suitable 
for F if I t  is defined for all predicate symbols, function symbols, and for 
all variables that  occur free in F.  

E x a m p l e :  F = V x P ( x ,  f ( x ) )  A Q(g(a, z)) is a formula. Here, P is a binary 
and Q a unary predicate, f is unary, g a binary, and a a 0-ary function 
symbol. The variable z is free in F.  An example for a structure ,4 = 
(U t ,  I t )  which is suitable for F is the following. 

I t ( P )  

1.4(Q) 

I . , ( f )  

= { 0 , 1 , 2 , 3 , . . . )  = I N ,  

= p t  = { (m,n)  lrn, n E U t  and m < n}, 

_ Q t  ._  {n E U t  In  is prime } 

= f t  = the successor function on U t ,  

hence f t ( n )  = n + 1, 

= g t  = the addition function on U t ,  

hence g t ( m ,  n) = m + n, 

- a t = 2 ,  

- z t - 3 .  

In this s tructure F is obviously "true" (we will define this notion in a 
moment) ,  because every natural  number is smaller than its successor, and 
the sum of 2 and 3 is a prime number. 

Of course, for this formula F one can also define suitable structures in 
which F is "false". Tha t  is, F is not a "valid" formula, i.e. F is not true in 
every suitable structure.  

We do not intend to give the impression that  the universe of a structure 
needs to be a set of numbers. Now we present an example of a structure 
which might look a little artificial at first, but this type of structure will 
play a crucial role in Section 2.4. Let F be a formula containing at least 
one constant  (i.e. a function symbol with arity 0), and let .A = ( U t ,  In )  be 
a structure where U t  consists of all variable-free terms that  can be built 
from the symbols occuring in F.  For the example formula F above, we get 

UA = {a, f (a ) ,  g(a, a), f (g(a ,  a)), g( f (a) ,  a), . . .}. 
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The crucial point is the interpretation of function symbols. For the function 
symbol f in F and for any term t E U-a, let f-a(t) be the term f ( t )  E U-a, 
and for the function symbol g in F and for any terms t l,t2 E U-a let 
g-a(tl,t2) be the term g(tl,t2) E U-a. Furthermore, let a-a = a. The reader 
should see what kind of interaction between syntax and semantics is going 
on here. The terms in U-a are interpreted by themselves. For a complete 
definition of a structure .A, the interpretation of the predicate symbol P 
still has to be given (i.e. the definition of I-a has to be extended to P) .  We 
leave it to the reader to do this in such a way that F becomes true (resp. 
false) under .A. 

D e f i n i t i o n  (semantics of predicate logic - continued) 

Let F be a formula and let .A = (U.a, I-a) be a suitable structure for F.  For 
each term t occurring in F,  we denote its value under the structure .A as 
.A(t) and define it inductively as follows. 

1. If t is a variable (i.e., t = x), then we let A(t) = x-a. 

2. I f t  has the form t = f ( t l , . . . , t k )  where t l , . . . t k  are terms and f is a 
function symbol of arity k, then we let A(t) = f~4(A(t l) , . . .  ,.A(tk)). 

The rule 2 also includes the possibility that  f has arity 0, that  is, t has the 
form t = a. In this case we get A(t) = a-a. 

Similarly, we define the (truth-)value of the formula F,  denoted .A(F), 
under the structure .A by an inductive definition. 

1. If F has the form F = P ( t l , . . . , t k )  where t l , . . . , t k  are terms and P 
is a predicate symbol of arity k, then 

A(F)- { 1, if ( .A(t l ) , . . . , .A(tk))  E P-a 
0, otherwise 

2. If F has the form F = --,G, then 

1, i fA(G)  - 0 
A ( F ) -  0, otherwise 

3. If F has the form F = (G A H), then 

1, i f A ( G ) -  1 and A ( H ) -  1 
A ( F ) -  0, otherwise 
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4. If F has the form F = (G V H), then 

1, i f X ( G ) -  1 or A ( H ) -  1 
. / t ( F ) -  0, otherwise 

5. If F has the form F = VzG, then 

{ 1, if for all u e U~, ~ , / ~ I ( G ) -  
A ( F ) -  O, otherwise 

Here, Afx/~] is the structure .A', which is identical to .4 with the 

exception of the definition of z A' : No matter whether / .4  is defined 
on z or not, we let x ~' = u. 

6. If F has the form F = 3zG, then 

1, if there exists some u e U~t such that .Afx/~I(G) - 1 
A ( F ) -  O, otherwise 

If for a formula F and a suitable structure ,4 we have .4(F) = 1, then 
we denote this by ,4 ~ F (we say, F is ~rue in .4, or .4 is a model for F) .  If 
every suitable structure for F is a model for F,  then we denote this by ~ F 
(F  is valid), otherwise ~= F.  If there is at least one model for the formula F 
then F is called satisfiable, and otherwise unsatisfiable (or contradictory). 

Exerc i se  44: Consider the following formula 

F = Vx3yP(x ,  y, f ( z ) )  . 

Define a suitable structure .4 = (U~t,/.4) for F which is a model for F,  and 
another structure B = (Us, IB) which is not a model for F.  

Many notions from propositional logic, like "consequence" and "equiva- 
lence" can be translated directly into predicate logic. We will use these 
notions in the following without giving new definitions. 

R e m a r k s :  

1. Analogously to propositional logic, it can be shown 
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. 

, 

F is valid if and only if -~F is unsatisfiable. 

Predicate logic can be understood as an extension of propositional 
logic in the following sense. If all predicate symbols are required 
to have arity 0 (then there is no use for variables, quantifiers, and 
terms), essentially we get the formulas in propositional logic where the 
predicates po play the role of the atomic formulas Ai in propositional 
logic. 

It even suffices not to use variables (and therefore also no quantifiers) 
such that predicate logic "degenerates" to propositional logic. Let 

F = (Q(a) v ~ n ( f ( b ) ,  c)) A P(a, b) 

be a formula without variables (but with predicate symbols of arity 
greater than 0). By identifying different atomic formulas in F with 
different atomic formulas Ai of propositional logic, such as 

Q(a) , , A1 

R ( f ( b ) , c )  ". " A2 

P(a,  b) ". ~ A3 

we get 
F' = (A1 V -~A2) A A3 �9 

Obviously, a formula obtained like F ~ from F is satisfiable (or valid) 
if and only if F is satisfiable (or valid). 

Observe that a formula without occurrences of a quantifier (e.g. the 
matrix of a given formula) can be transformed into an equivalent 
formula in C N F  or D N F  where only the tools from propositional 
logic are needed. 

Although predicate logic is expressionally more "powerful" than pro- 
positional logic (i.e. more statements in colloquial language can be 
expressed formally), it is not powerful enough to express every con- 
ceivable statement (e.g. in mathematics). We obtain an even stronger 
power if we allow also quantifications that range over predicate or 
function symbols, like 

F = V P 3 f V x P ( f ( x ) ) .  

This is a matter of the so-called second order predicate logic (that 
we will not study in this book). What we consider here is the first 
order predicate logic. The elements of the universe (symbolized by the 
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variables in a formula) are understood as first order objects whereas 
predicates and functions defined on the universe are second order 
objects. 

Exe rc i se  45: Consider the following formulas F1, F2, F3 which express that 
the predicate P is reflexive, symmetric and transitive. 

F~ 

F2 

F3 

= VzP(z ,  z) 

= V~Vy(P(~, y) --, p(y,  ~)) 

= VxVyVz((P(z, y) A P(y, z)) ---, P(x, z)) 

Show that none of these formulas is a consequence of the other two by 
presenting structures which are models for two of the formulas, but not for 
the respective third formula. 

Exe rc i se  46: In predicate logic with identity the symbol - is also permit- 
ted in formulas (as a special binary predicate with a fixed interpretation) 
which is to be interpreted as identity (of values) between terms. How has 
the syntax (i.e. the definition of formulas) and the semantics (the definition 
of .A(F)) of predicate logic to be extended to obtain the predicate logic 
with identity? 

Exerc i se  47: Which of the following structures are models for the formula 

F = 3x3y3z(P(x,  y) A P(z, y) A P(x, z) A -,P(z, x)) ? 

(~) t r A =  ~ ,  pA = {(m, n) I m,,~ ~ IN, m < n} 

(b) UA = IN, p~t = { (m ,m + 1) Ira E IN} 

(c) U~t = 2 ~ (the power set of IN), 
p~t = {(A, B) [ A, B C_ IN, A C_ B} 

Exerc i se  48: Let F be a formula, and let z l , . . . ,  xn be the variables that 
occur free in F.  Show: 



50 C H A P T E R  2. P R E D I C A T E  L O G I C  

(a) F is valid if and only if VxlVz2 . . . V x ,  F is valid, 

(b) F is satisfiable if and only if 3x13x2... 3x ,  F is satisfiable. 

E x e r c i s e  49: Find a closed satisfiable formula F,  such that  for every model 
A -  (U.4,1.4) of F ,  IU.41 _> 3. 

E x e r c i s e  50: Let F be a satisfiable formula and let .4. be a model for F 
with [UA[ - n. Show that  for every m > n there is a model Bm for F with 
[Us., [ -  m. Furthermore, there is a model Boo for F with [Us~ [ -  oo. 

Hint: Pick some element u from U.4, and add new elements to Us., 
having the same properties as u. 

E x e r c i s e  51: Find a satisfiable formula F of predicate logic with identity 
such that  for every model .4. of F ,  [U.4[ < 2. 

This exercise seems to contradict the previous exercise. Convince your- 
self that  there is no contradiction! 

E x e r c i s e  52: Find formulas of predicate logic with identity (cf. Exercise 
46) which contain a binary predicate symbol P (or a unary function symbol 
f )  and which express: 

(a) P is a anti-symmetric relation. 

(b) f is a one-one function. 

(c) ]' is a function which is onto. 

E x e r c i s e  53: Formulate a satisfiable formula F in predicate logic with 
identity (cf. Exercise 46) in which a binary function symbol f occurs such 
that  for every model .4. of F it holds" 
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(U~t, f~t) is a group. 

Exerc i se  54: A stack is a well known abstract data structure in Computer 
Science. Certain predicates and functions (better: operations) are defined 
to test the status of the stack or to manipulate the stack. E.g., IsEmpty is 
a unary predicate expressing the fact that the stack is empty, and nullstack 
is a constant that stands for the empty stack. Further, top (giving the top 
element of the stack) and pop are unary functions, and push is a binary 
function (which gives the new stack after pushing a new element on top of 
the given stack). 

"Axiomatize" these operations which are allowed on a stack by a formula 
in predicate logic in such a way that every model of this formula can be 
understood as an (abstract) stack. 

Hint" A possible part of such a formula might be the formula 

2.2  N o r m a l  F o r m s  

The concept of (semantic) equivalence can be translated into predicate logic 
in the obvious way: two formulas F and G of predicate logic are equivalent 
(symbolically: F =_ G) if for all structures ,4 which are suitable for both F 
and G, ,4(F) = A(G). 

Also we observe that all equivalences which have been proved for for- 
mulas in propositional logic still hold in predicate logic, e.g. deMorgan's 
laW: 

-~(F A G ) -  (-~f V-~G) 

For the purpose of manipulating formulas of predicate logic, to convert 
them to certain normal forms etc., we need equivalences which also include 
quantifiers. 

T h e o r e m  

Let F and G be arbitrary formulas. 
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1. --VxF -- Hx-~F 
-~3zF = Vx-~F 

2. If x does not occur free in G, then 
( V x F A G )  - V x ( F A G )  
(V~F v G) = W(F v G) 
( 3 x F  A G) - 3 x ( F A G )  
( 3 x F V G )  - 3 x ( F  V G) 

3. (V~F ^ V~G) - V~(F ^ G) 
( 3 ~ F  v 3~G) = 3 ~ ( F  v G) 

4.  V x V y F  - VyVxF 

3 x 3 y F  - 3 y 3 x F  

P r o o f i  As an example, we only present the proof for the first equivalence in 
2. Let ,4 - (Ujt,/ .4) be a structure, suitable for both sides of the equivalence 
to be proved. Then we have: 

.A(VxF A G) = 1 

iff  . A ( V x F ) =  1 and A ( G ) =  1 

iff for all u 6 U~, .A[x/.](F) - 1 and .A(G) = 1 

iff for all u 6 U.4, .A[x/ . ] ( f )  = 1 and .Aff~/u](G) = 1 (because x 
is not free in G, we have .A(G) - .A[x/u](a) ) 

iff for all u E U.4, .A[~/u]((F A G)) = 1 

if~ ~ ( W ( F  ^ G)) = ~. 

It is even more interesting to observe which pairs of very similar looking 
formulas are not equivalent: 

(V~F v V~G) ~ V~(F v a) 

E x e r c i s e  55: Confirm this by exhibiting counterexamples (i.e. structures 
which are models for one of the formulas, but not for the other). 
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Exerc i se  56:  Show that F - ( 3 x P ( x )  ~ P ( y ) )  is e q u i v a l e n t  to G - -  

v~(P(~)-- ,  P(y)). 

Exerc i se  57: Prove that Vx3yP(z,  y) is a consequence of 3uVvP(v, u), but 
not vice versa. 

We further observe that the substitution theorem from propositional logic 
analogously holds in predicate logic. The induction proof (on the formula 
structure) that was given in Section 1.2 can be extended to the cases that  
can occur for formulas of predicate logic (Case 4: F has the form F - 3xG, 
Case 5: F has the form F = VxG). 

This leads over to the next remark. Induction proofs on the formula 
structure can be done in predicate logic as well (with more cases). Since 
the (inductive) definition of terms precedes the definition of formulas, and 
terms are parts of formulas, it is sometimes necessary to prove the assertion 
(or an adaptation of the assertion) inductively for terms first, and then for 
formulas. 

Observe that the equivalences 1-3 in the above theorem, applied from 
left to right, "drive the quantifiers in front of the formula". 

Example: 

(~(3xP(x,  y) V VzQ(z)) A 3wP(f(a,  w))) 

- ((-~3xP(z, y) A ~VzQ(z)) A 3wP(f(a,  w))) (de Morgan) 

-- ((Vz~P(z,  y) A 3z~Q(z)) A 3wP(f(a,  w)) (by 1.) 

=_ (3wP(f(a,  w)) A (Vx-~P(z, y) A 3z~Q(z))) (commutativity) 

- 3w(P(f(a,  w)) A Vx(-~P(z, y) A 3z~Q(z))) (by 2.) 

- 3w(Vx(::]z~Q(z) A ~P(x,  y)) A P(f(a,  w))) (commutativity) 

-- 3w(Vx3z(~Q(z) A -~P(x, y)) A P(f(a,  w))) (by 2.) 

- 3wVx3z(~Q(z) A ~P(x,  y) A P(f(a,  w))) (by 2.) 

Several points need to be observed. The order of the quantifiers which re- 
sults at the end, is not necessarily uniquely determined from the beginning. 
Actually, it depends on the type and the order of the applied equivalences. 
In the above example, every permutation of "3w", "Vz" and "3z" would 
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have been achievable. (It is not always like this). But adjacent quantifiers 
of the same type can always be swapped (see 4.). 

To make it possible that the equivalences under 2. can always be ap- 
plied, we need to rename variables (in such that way that we get an equiv- 
alent formula). 

Def in i t ion  (substitution) 

Let F be a formula, x a variable, and t a term. Then, Fix~t] denotes the 
formula, obtained from F by substituting t for every free occurrence of x 
in F.  

By [x/t], a substitution is described. In the following, we treat substitu- 
tions as independent objects, describing a mapping from the set of formulas 
to the set of formulas. Such substitutions can be concatenated, e.g. 

sub = [xltl][ylt2] 

describes the effect of first substituting in a formula all free occurrences of 
x by tl,  and then, all free occurrences of y by t2. (Note that tl can contain 
occurrences of y). 

Exe rc i se  58: Prove by induction on the formula structure the following 
translation lemma. Here, t is a variable-free term. 

= At /ac,)l(F) 

The proof of the following lemma is just as easy. 

L e m m a  (renaming of bound variables) 

Let F = Q x G  be a formula where Q E {3, V}. Let y be a variable that does 
not occur free in G. Then, F = QyG[x/y].  

By systematic applications of the previous lemma where always new vari- 
ables have to be taken for y, the following lemma can be proved. Call a 
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formula rectified if no variable occurs both bound and free and if all quan- 
tifiers in the formula refer to different variables. 

L e m m a  

For every formula F there is an equivalent formula G in rectified form. 

E x e r c i s e  59: Find an equivalent and rectified formula for 

F = Vz3yP(z ,  f(y))  A Vy(Q(x, y) v R(x)). 

The above example already shows that  every formula can be transformed 
into an equivalent and rectified formula where all quantifiers stand "in 
front". We summarize this situation more formally in the following defini- 
tion and theorem. 

D e f i n i t i o n  (prenex form) 

A formula is in prenez form if it has the form 

Q l y l Q 2 y 2 . . . Q , y , F ,  

where Qi E {3, V}, n > 0, and the yi are variables. Further, F does not 
contain a quantifier. 

T h e o r e m  

For every formula F there exists an equivalent (and rectified) formula G in 
prenex form. 

P r o o f  (by induction on the formula structure of F):  
If F is an atomic formula, then F already has the desired form. Thus we 
choose G = F.  

For the induction step we consider the different cases. 
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1. Let F have the form ~F1 and Gz - Qzy lQ2y2" ' "  Q , y n G '  is the for- 
mula, equivalent to F1, which exists by induction hypothesis. Then 
we have 

F - 

where Qi - 3 if Qi - V, and Qi - V if Qi - 3. This formula has the 
desired form. 

2. Let F have the form (Fz o F2) where o E {A, V}, then there are, by 
induction hypothesis, equivalent formulas G1, G2 in prenex form for 
Fx and F2, resp. By renaming the bound variables, say in Gz, we can 
make the bound variables of G1 and G2 disjoint. Let then Gx have the 
form QlylQ2y2""  "QkYkG'I and G2 have the form Q'xzxQ'2z2.. .Q~zzG' 2 
where Qi, Q~ E {3, V}. It follows that  f is equivalent to 

I l I I 
qzyzQ~y2 . . "qkykQzzz  O2z2 "'" Qt zl (G' 1 o G 2) 

This formula has the desired rectified prenex form. 

3. If F has the form QzF1 where Q E {q,v}, then the formula F1 is 
equivalent, by induction hypothesis, to a formula of the form 

QzyzQ2y2 . . "QkykF~. 

By renaming bound variables, we can assume that  the variable x is 
different from all the variables yi. Then, F is equivalent to 

QzOly l  Q2y2""" Ok yk F~. 

Exe rc i s e  60: Implicit in the above proof, there is an algorithm hidden to 
convert formulas into rectified prenex form. Formulate such an algorithm 
in a more direct way, using a PASCAL-like notation. 

E x e r c i s e  61: Convert the formula 

F - (Vx3yP(x ,  g(y, f ( x ) ) )  V ~Q(z ) )  v ~ V x R ( x ,  y) 

into rectified prenex form. 
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From now on, we use the abbreviation R P F  for "rectified and in prenex 
form". 

D e f i n i t i o n  (Skolem form) 

For each formula F in R P F  we define its Skolem .formula as the result of 
applying the following algorithm to F.  

whi le  F contains an existential quantifier do  
b e g i n  

Let F have the form F - VylVy2. ."  Vyn 3zG for some for- 
mula G in R P F  and n > 0 (the block of universal quan- 
tifiers could also be empty); 

Let f be a new function symbol of arity n that does not 
yet occur in F ; 

F := V y l V y 2 . . . V y n G [ z / f ( y l ,  y 2 , . . . ,  yn)]; 

(i.e. the existential quantifier in F is canceled and each 
occurence of the variable z in G is substituted by 
f(y , y,) ) 

end.  

Exe rc i se  62: Find the Skolem form of the formula 

Vx3yVz3w(~P(a ,  w) V Q(f (x ) ,  y)). 

T h e o r e m  

For each formula F in R P F ,  F is satisfiable if and only if the Skolem form 
of F is satisfiable. 

P r o o f :  We show that  after each application of the while-loop a formula 
results which is satisfiable if and only if the original formula is satisfiable. 
Hence, let 

F = VylVy2 �9 �9 �9 Vyn 3zG . 

After one application of the while-loop we obtain the formula 

F '  - y 2 , . . . ,  y . ) ] .  
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Let us suppose first that  F '  is satisfiable. Tha t  is, there is a structure ,4, 
suitable for F ' ,  with ~ ( F  ') = 1. Then A is also suitable for F,  and we get 

for all u l , u 2 , . . . , u n  E Un , 

By the translat ion lemma, 

for all ul,  u 2 , . . . , u n  E Un , 

A[y,I , , ,][ ,~I, ,{ . . .[ , , , I , , , ,][~/, ,](G ) = 1 , 

where v : f n ( u l ,  U2, ' ' ' ,  Un). Hence we get 

for all ul,  u 2 , . . . ,  un E U n  there exists a v E Un such tha t  

A{y,l,,,][y~l,,~]...[y,,i,,,,][~,l,,](G) = 1 .  

Therefore, 
.A (Vy t  Vy2 . . . V y ,  3 z G )  = 1 . 

In other words, ~ is also a model for F.  

Conversely, suppose F has the model ,4 = (Un, In) .  We can assume 
t h a t / . 4  is undefined on function symbols that  do not occur in F .  Hence, 
In  is not defined on f and not (yet) suitable for F ' .  Since ~ ( F )  = 1, we 
have 

for all u l, u 2 , . . . ,  un E Un there exists a v E Un 
such that  A~y,/, , ,]. . .[y, . / , , , ,][,/ , ,](G) = 1 . 

( , )  

Now we define a new structure ,4' which is an extension of ,4 such t ha t / . 4 ,  
is additionally defined on f .  We let f n '  be defined as 

- , ,  

where v E Un = Un, is chosen according to ( , ) .  (At this point of the 
proof, the a z i o m  o f  choice  is used which guarantees the existence of such 
a "non-constructively" defined function). Using this definition of f n ' ,  we 
obtain 

for all ul,..., u, E [Ix , 

A ' [ y ~ I ~ ] . . . [ ~ . I ~ , . ] [ ; I ] ~ ,  (~ ,~ , . . . ,~ , . ) ] (G)  - i. 
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Using the translation lemma, 

for all u 1 , . . . ,  Un E U.a , 

.A ' [y, i , . , , ] . . . [y, , lu, , ] (G[zl f (Yi ,  . . . , yn)] ) = 1, 

and therefore, 

A ' ( V y , - . .  V y n G [ z l . f ( y i , . . . ,  y,.,)]) = 1. 

Hence, ,4' is a model for F ' .  

Notice that the transformation of a formula to Skolem form does not 
preserve equivalence (because of the new function symbol(s) occurring in 
the Skolem formula). What  we have shown is a weaker type of equivalence 
with respect to satisfiability: F is satisfiable if and only if F ~ is satisfiable. 
In the following, we call this situation s-equivalence. 

Exerc i se  63: Apply all transformational steps introduced in this chapter 
(rectification, prenex form, Skolem form) to the formula 

V z 3 y ( P ( x ,  g(y) ,  z) V ~ V x Q ( x ) )  A -~Vz3x~R(J ' (x ,  z), z). 

Exerc i se  64: If we modify the algorithm to produce the Skolem form such 
that the roles of V and 3 are swapped, then we obtain an algorithm which 
transforms a formula F in R P F  into a formula F ~ with no occurrences of 
universal quantifiers. Prove that F is valid if and only if F '  is valid. 

Exerc i se  65: Construct an algorithm that produces a Skolem form of a 
rectified formula directly, i.e. without the intermediate step of producing a 
prenex form. 

Hint" It is important to distinguish between existential (universal) quan- 
tifiers in the original formula that lie within the "scope" of an even (odd, 
resp.) number of negation signs. 

Finally, we want to summarize all the transformations which should be 
applied to a general formula to obtain an s-equivalent formula which is in 
appropriate form for the various algorithms considered in the next sections. 



60 CHAPTER 2. PREDICATE LOGIC 

Given : A formula F in predicate logic (with possible occurrences of free 
variables). 

1. Rectify F by systematic renaming of bound variables. The result is 
a formula F1 equivalent to F. 

2. Let Yl , . . . ,  yn be the variables that occur free in F1. Substitute F1 by 
F2 = 3yl 3y2.. .  3y, Fx. Then, F2 is s-equivalent to F1 (cf. Exercise 48) 
and also to F. Further, F2 is closed. 

3. Produce from F2 a formula F3 in prenex form. F3 is equivalent to F2, 
hence s-equivalent to F. 

4. Eliminate the existential quantifiers in F3 by transforming F3 into 
a Skolem formula F4. The formula F4 is s-equivalent to F3, hence 
s-equivalent to F. 

5. Convert the matrix of F4 into C N F  (and write the resulting formula 
F5 down as a set of clauses). 

We demonstrate the above procedure with an example. Let 

F = (~3x(P(x, z) V VyQ(x, f(y))) V VyP(g(x, y), z)) 

be given. Renaming y to w in the second disjunct gives a rectified form 

F1 = (~3x(P(x,z)  V VyQ(x, f(y))) V VwP(g(x, w),z)) 

The variable z occurs free in F1. Hence we let 

F2 = 3z((--,3x(P(x, z) V VyQ(x, f(y))) v VwP(g(x, w), z))). 

Converting to prenex form gives (for example) 

F3 = 3zVx3yVw((--,(P(x, z) A ~Q(x, f(y))) v P(g(x, w), z)). 

Now we produce the Skolem form. A new function symbol a of arity 0 (i.e. 
a constant) is substituted for z and h(x) is substituted for y. 

F4 = VxVw((~(P(x,a) A--,Q(x,f(h(x)))) V P(g(x, w), a)). 

Transforming the matrix of F4 into C N F  yields 

F5 = VxVw((~(P(x, a) V P(g(x, w), a)) A (~Q(x, f(h(x)))) V P(g(x, w), a)). 
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Now, F5 can be written as a clause set: 

{ {--,(P(x, a), P(g(x, w), a) }, {--,Q(x, f(h(x)))), P(g(x, w), a)} }. 

Every variable is understood as universally bounded. Hence we do not need 
to write down the universal quantifiers explicitly. 

This clause presentation of formulas in predicate logic is the starting 
point for several algorithms, based on resolution, to be presented in Sections 
2.5 and 2.6. 

Finally we remark that all the transformational steps can be done algo- 
rithmically. 

2.3 Undecidability 

A general theme of this book is the search for an algorithmic test for sat- 
isfiability or validity of formulas. We will see in this section that general 
algorithms of this type cannot exist for formulas in predicate logic. Briefly, 
predicate logic is undecidable. (More precisely, the satisfiability problem 
and the validity problem for formulas in predicate logic are undecidable). 
We must be content with so-called semi-decision algorilhms which will be 
presented in the next section. 

The truth table method for testing satisfiability or validity of formulas 
discussed in the chapter on propositional logic could be derived from the 
insight that it is enough to test a finite (although exponential) number 
of t ruth assignments. In predicate logic we have to deal with structures 
instead of t ruth assignments. The question is whether we can restrict our 
attention to a selection of finitely many structures, and also, to structures 
of finite size. As already suggested, this kind of direct adoption of the truth 
table method does not work. 

O b s e r v a t i o n :  There exist formulas in predicate logic which are satisfiable, 
but have no models of finite size (i.e. with a finite universe). 

Consider the formula 

F = VxP(x, f (x))  
^ 

A VuVvVw((P(u, v) A P(v, w)) --, P(u, w)). 



62 C H A P T E R  2. P R E D I C A T E  LOGIC 

This formula F is satisfiable, because it has for example the following model 
A = (U.4,1.4) where 

U.4 = { 0 , 1 , 2 , 3 , . . . }  = IN 

p.4 = { ( m , n )  l m  < n}, 

f~(=) - =+1.  

But this formula does not possess a finite model. Suppose, B = (Us, Is )  is 
such a model for F.  Then let u be an arbitrary element of Us. Consider 
the sequence 

u0, ux, u2 , . . .  E Us where u0 = u and ui+x = fS (u i ) .  

Since Us is finite, there exist natural numbers i and j ,  i < j,  such that 
ui = uj. By the first subformula of F we have: 

(~0, ~)  e p~, (~, ~ )  ~ P~, (~, ~ )  ~ P~,. . .  

Further, the third subformula of F says that pS  must be a transitive re- 
lation. This implies that (ui, uj) E pS .  Since ui = uj, we have found an 
element v of the universe Us with (v, v) E pS.  But this contradicts the 
second subformula of F which says that pS  must be non-reflexive. This 
shows that F has only infinite models. 

It should be said that the above argument is not yet a formal proof of 
undecidability of predicate logic. The existence of satisfiable formulas which 
have only infinite models just shows that there is no direct translation of 
the truth table method into predicate logic to yield a decision procedure. 
The possible existence of totally different algorithms is not touched by the 
above argument. 

For a formal presentation of an undecidability proof, it is necessary 
to clarify and formally define the notions "computation" and "algorithm" 
first. After all, we need to show that there is no algorithm that is able 
to compute (in a finite amount of time) whether a given formula is, say, 
satisfiable. These issues are subject of a different field, computability ~he- 
ory, which is not the subject of this book (see, for example, the books by 
Manna or Hopcroft and Ullman). Therefore we proceed with some informal 
explanations, and then use a result from computability theory, namely that  
a specific well known problem is undecidable. Relying on this fact, we can 
proceed formally. 

In computability theory, a function is called computable (or a problem 
is called decidable) if there is an abstract mathematical machine (Turing- 
machine) which, started with an input which is in the function domain 
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(which is a syntactically correct instance for the problem, resp.) halts after 
a finite number of steps and outputs the correct function value (answers 
correctly "yes" or "no", according to the problem definition). If no such 
machine exists, then the function (problem) is called non-computable (un- 
decidable). 

We have to deal with problems in the following. Such a problem is given 
by specifying the form of a syntactically correct instance for the problem, 
and what the question to be solved is. 

In particular, we will show that the following problem is undecidable. 

Instance: A formula F in predicate logic. 

Question: Is F valid? 

In what follows, we use a result from computability theory: the following 
problem, called Post's Correspondence Problem (PCP for short), is unde- 
cidable (see Hopcroft and Ullman). 

Instance" A finite sequence (xl, Yl ) , . . . ,  (xk, Yk) of pairs of non- 
empty strings over the alphabet {0, 1}. 

Question: Does there exist a finite sequence of indices il, i 2 , . . . ,  i ,  E 
{ 1 , . . . , k } ,  n > 1, such that x i l x i 2 . . . x i .  - yilyi~ . . . y i .  ? 

In the case that  i l , . . . ,  i ,  exists, we call it a solution of the PCP. 

E x a m p l e :  The correspondence problem for 

K -- ((1,101), (10, 00), (011, 11)), 

that is 
x l - - 1  x 2 - - 1 0  x a - - 0 1 1  
Y l -  101 Y 2 -  00 Y 3 -  11 

has the solution (1,3,2,3) because: 

xlxax2~a - 101110011 - ylyay2ya 

Exerc i se  66: Show that  the following instance of PCP has a solution: 

x l - - 0 0 1  :c2--01 xa--01 x4--10  
Y l - - 0  Y2--011 Ya--101 y4--001.  
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(Warning: the shortest solution consists of 66 indices. Without using a 
computer, the solution can be found if constructed "from behind"). 

We use the proof method of reduction to show that the validity problem is 
undecidable. That  is, from a hypothetical decision algorithm for the validity 
problem we derive the existence of a decision algorithm for the PCP - which 
is in contradiction to the result stated above. Hence, a decision algorithm 
for the validity problem does not exist, this means that the problem is 
undecidable. 

Many known undecidability results have been shown by reduction. Also, 
it is very common to use the undecidability of the PCP - in particular, for 
undecidability proofs in Formal Language Theory. 

T h e o r e m  (Church) 

The validity problem for formulas of predicate logic is undecidable. 

Proof: As discussed above, the task is to define an algorithmic method that 
transforms arbitrary instances K for the PCP into certain instances, i.e. 
formulas, F = F K for the validity problem, such that K has a solution if 
and only if the formula F K is valid. If this can be shown then the hypo- 
thetical existence of a decision algorithm for the validity problem implies 
the existence of a decision algorithm for the PCP. Hence, let 

K = ((xl ,Yl) ,(x2,  y2) , . . . , (xk ,yk) )  

be an arbitrary correspondence problem. The desired formula F = F K con- 
tains a constant a and two unary function symbols f0, fl .  Furthermore, a 
binary predicate symbol P occurs in F. For a more succinct representation 
of the formula, we use the following abbreviation. Instead of 

we write 

fj, ( f j~ ( . . . f j , ( x ) . . . ) )  with j, E {0, 1} 

(The indices now stand in reverse order). 

Our formula F = F K has the form 

F =  ((F1AF2)-- .  F3). 
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The subformulas are 

k 

F1 -- A P(fx , (a) ,  fy,(a)) 
i : l  

k 

F, - wvv(v( , v) -4 A s,, (,))) 
i - -1  

F3 = 3zP(z ,  z). 

Obviously, for given K, F can be computed from K in a finite amount 
of time. We have to show that  the formula F is valid if and only if the 
correspondence problem K has a solution. 

Let us assume first that  F is valid. Then every suitable structure for F 
is a model. In particular, the following structure .4 = (U~t,/.4) must be a 
model for F .  

~ 

a . A  m 

So~( ,~ )  - 
S ~ ( ~ )  - 

p A  = 

{0, 1}*, 

e (the empty string), 

a0  (the concatenation of a and 0), 

a l  (the concatenation of a and 1), 

{ (a,/3) [ a,/3 e {0, 1} + and there are indices 
i x , i 2 , . . . , i t  such that  a - zilzi2 . . . z i ,  and 

= y~,y~, . . .  y~, }. 

That  is, a pair of strings (a,  fl) is in p~t if a can be built up from the zi 
by the same sequence of indices as/3 from the yi. It is easily seen that  A 
is suitable for F .  Hence A ~ F.  Further, it can be checked that  .At ~ F1 
and Jt ~ F2. Since F has the form of an implication ((F~ A F2) ---+ F3), 
it follows that  A ~ F3. This means that  there exists some a such that  
(a, a ) E  p~t. Hence K has a solution. 

Conversely, suppose that  K has the solution i1, i 2 , . . . , i , , .  Let .4 be 
an arbitrary structure suitable for F.  We have to show that  A ~ F.  If 
A ~ F1 or ~ ~ F2, then, by the form of F ,  ~t ~ F follows immediately. 
Hence let us assume that  ~ ~ F1 and A ~ F2, thus .4 ~ (F~ A F2). We 
now define a mapping (an embedding)/z: {0, 1}* ~ U~t by #(r = a Jt and 
#(x) = ..4(fx(a)) for x ~- e. 

Because ,4 ~ El, we have for i = 1 , 2 , . . . , k :  (#(z i ) ,#(y i ) )  e pA .  
Because of .4 ~ F2, we have for i = 1, 2 , . . . ,  k, that  (#(u), lZ(V)) E p~t 
implies (•(uzi), #(vyi)) ~_ p.a. By induction, it follows that  

( , ( ~ , ~ , ~  . . .  ~ ), , ( y , ,  y , ,  . . .  y ~ . ) ) e  P ~ .  
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In other words, for u - p ( x i , x i ~ . . . x i . )  - p(y i ,  y i ~ . . ,  y i . )  it is true that 
( u , u )  E B .a �9 From this, we get .,4 ~ 3 z P ( z , z ) ,  that is, ,4 l= F3, and 
therefore, .4 ~ F. �9 

C o r o l l a r y  

The satisfiability problem of predicate logic 

Instance" A formula F of predicate logic. 

Quest ion:  Is F satisfiable? 

is undecidable. 

P roof :  A formula F is valid if and only if --F is unsatisfiable. There- 
fore, the hypothetical existence of a decision algorithm for the satisfiability 
problem leads to a decision algorithm for the validity problem, and we have 
shown above that such an algorithm does not exist. �9 

The reader will have noticed that the proof of this corollary is another 
example of the reduction method. 

Exerc i se  67: Prove that the validity problem (and therefore also the sat- 
isfiability problem) is undecidable even for formulas without occurrences of 
function symbols. 

Exerc i se  68" Prove that the following variation of the PCP is decidable" 

Instance" A finite sequence of pairs ( x l , y l ) , . . . , ( x k , Y k )  where 
x i ,Y i  E {0, 1} +. 

Quest ion:  Do there exist finite sequences of indices il, i 2 , . . . ,  in, 

n > 1, and j l , j 2 , . . . , j m ,  m > 1, such that xi lz i2  . . . x i n  = 

Yj l Yj2 " " Yjm ? 
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E x e r c i s e  69: In monadic predicate logic all the predicate symbols are 
unary (i.e. monadic) and no occurrences of function symbols are allowed. 

Prove: If some closed formula F of monadic predicate logic with the 
unary predicate symbols P1 , . . . ,  Pn is satisfiable, then there is already a 
model of cardinality 2". From this, conclude that satisfiability (and also 
validity) for formulas in monadic predicate logic is decidable. 

Hint: Show that the universe of every model A = (U~t,I.~) for F can 
be partitioned into at most 2 '~ equivalence classes where two elements 
u,v E Uct are equivalent if they have the same truth value under each 
of P ~ , . . . ,  P ~ .  Then, a new model B can be defined for F whose universe 
consists of these equivalence classes. 

E x e r c i s e  70: Show that the following problem is undecidable" 

Instance: The description of an algorithm A. 

Question: If A is started with its own description as input, does 
A stop? 

E x c u r s i o n  (mathematical theories) 

At this point, some important notions in Formal Logic shall be discussed. 
What  is a formal mathematical theory? These issues play an important 
role in standard presentations of logic, but in this book with its emphasis 
on Computer Science and algorithmic aspects of logic, it is more a fringe 
area. 

A lheory is a non-empty set T of fo rmulas -  very often restricted to 
formulas obeying certain syntactical restrictions (e.g. only a given finite set 
of function symbols or predicate symbols may be allowed) - which is closed 
under consequence. More precisely, T is a theory, if for all F1, F2,. . . ,  Fn E 
T and formulas G, if G is a consequence of/ '1, F 2 , . . . ,  Fn then G E T. The 
formulas which are elements of a theory T are called theorems of T.  

Every theory T necessarily has to include all valid formulas (possibly 
only those obeying the syntactical restriction as above). Furthermore, a 
theory either contains all formulas, or it is disjoint from the set of unsat- 
isfiable formulas. The former situation is the degenerate case of an incon- 
sistent theory. A theory is called inconsistent if it contains some closed 
formula F together with its negation -~F. The following diagram indicates 
the situation of a non-degenerate theory T. 



68 CHAPTER 2. PREDICATE LOGIC 

valid satisfiable, but not unsatisfiable 
formulas valid formulas formulas 

There are two different methods to define a particular theory. 

The model theoretic method is to define a structure ,4 first, and then 
take the theory of ,4 (in symbols: Th(.A)) as the set of all formulas for 
which .4 is a model. That  is, 

Th(A) = {F I A ~ F}. 

It is clear that  a set of formulas of the form Th(.A) is really a theory, i.e. 
it is necessarily closed under consequence. Such a theory is automatical ly  
consistent. Further, such a theory is always complete, which means that  for 
every closed formula F,  either F E T or -~F E T holds (but not both).  

Examples for such model theoretically defined theories are Th(IN, +) 
and Th(IN, + , , ) .  Here, (IN, +)  and (IN, +,  ,)  are the structures obtained 
by taking as universe IN and interpretation of -I- as usual addition and �9 as 
usual multiplication. These theories are called Presburger arithmetic and 
(full) arithmetic, respectively. The formulas of the theories are restricted 
to consist of the function symbols -t- and �9 (and possibly further constant 
symbols and identity) only. For example, 

w v ~  ((~ + y) �9 (~ + ~) = (~ �9 ~) + (2 �9 �9 �9 y) + (~ �9 ~)) 

is an element of Th(IN, +, ,). 

The axiomatic method is to define a set of formulas M,  the axioms, and 
then take as the theory associated with M the set of formulas which are 
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consequences of M. Formally, 

Cons(M) {G I there are formulas F 1 , . . . ,  F,, E M, 

such that G is a consequence of {F1 , . . . ,  F,,} }. 

Again, the formulas in Cons(M) can be restricted to consist only of symbols 
which occur in M. It is required that such an axiom set M is decidable, i.e. 
for every formula F it should be possible to decide whether F E M or not. 
In particular this is the case if M is finite. 

A theory T is called (finitely) aziomatizable if there exists a (finite) 
axiom set M such that T = Cons(M). For example, the set of valid 
formulas of predicate logic is finitely axiomatizable, because 

Cons(O) = {F IF is valid }. 

Another example is the theory of groups. This is Cons(M) where 

M = {VxVyVz(f(f(x,y),z) = f(x, f(y,z))), 
= 

y )  = 

It can be shown that any axiomatizable theory is semi-decidable (which 
is the same as recursively enumerable; for an explanation of these notions 
see Section 2.4). Furthermore, every complete and axiomatizable theory is 
decidable. Now there are two main questions that can be investigated. 

1. Are certain (axiomatizable) theories decidable? For example, we have 
seen in Section 2.3 that the finitely axiomatizable theory Cons(O) is 
undecidable (and hence, it cannot be complete). 

2. Are certain model theoretic theories axiomat izable-  or even decid- 
able? It can be shown that Th(IN, + , . )  is not axiomatizable (hence 
not decidable). In other words, every arithmetically correct axiom 
system M (for example: Peano arithmetic) necessarily is incomplete: 

Cons(M) # Th(IN, +, .). 

Arithmetical correctness means that M (and therefore also Cons(M)) 
is included in Th(IN,., +). (This is Ghdel's famous incompleteness 
theorem). This is in contrast to the fact that Th(IN, +) is decidable 
(and therefore axiomatizable). 

Exerc i se  71: Why is every complete and axiomatizable theory decidable? 
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2.4 Herbrand's  Theory  

One problem with dealing with formulas in predicate logic is that  the defi- 
nition of structures allows arbitrary sets as possible universes. It seems that  
there is no systematic way to find out the "inner structure" and cardinality 
of a potential model of a given formula. Can one enumerate all potential 
structures to test them for being a model? If so, how? 

Indeed, in the last section it was shown that the problem of determining 
whether a given formula has a model or not is undecidable. This indicates 
a borderline which we will not be able to pass: We cannot expect to devise 
a decision algorithm. Nevertheless, in this section we will investigate the 
remaining positive aspects, insofar as they are not in contradiction to the 
undecidability result of the last section. 

The (algorithmic) search for potential models of a formula can be re- 
stricted to certain canonical structures. This theory which we will develop 
in the following goes back to the work of Jacques Herbrand, Kurt GSdel 
and Thoralf Skolem. In particular, Herbrand's work is important  for the 
approach taken here. 

The starting point of our investigations are closed formulas, i.e. formulas 
without occurrences of free variables, which are in Skolem form (hence also 
in R P F ) .  In section 2.3 it was shown how every formula of predicate logic 
can be transformed into a s-equivalent formula of this kind. 

De f in i t i on  (Herbrand universe) 

The Herbrand universe D(F) of a closed formula F in Skolem form is the 
set of all variable-free terms that can be built from the components of F.  
In the special case that  F does not contain a constant, we first choose an 
arbitrary constant, say a, and then build up the variable-free terms. More 
precisely, D(F) is defined inductively as follows. 

1. Every constant occurring in F is in D(F). If F does not contain a 
constant, then a is in D(F). 

2. For every k-ary function symbol f that occurs in F,  and for all terms 
tt,t2, . . . , tk  already in D(F), the term f(t2,t2,. . .  ,tk) is in D(F). 

E x a m p l e :  Consider the following formulas F and G. 

F = VxVyVzP(x,f(y),g(z,x)) 
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G = VxVyQ(c,f(x),h(y,b)) 

The formula F does not contain a constant. Therefore we get 

D(F) {a, f(a), g(a, a), f(g(a, a)), f ( f (a)) ,  g(a, f(a)), g(f(a), a), 
g( f (a) , f (a) ) , . . . }  

and 

D(G) {c, b, f(c),  f(b), h(c, c), h(c, b), h(b, c), h(b, b), 

f ( f (c)) ,  f(f(b)),  f(h(c, c)), f(h(c, b)), f(h(b, c)), . . .} 

In the following, for a given formula F, D(F) will be used as the "standard" 
universe to search for potential models for F - and we will show that  this 
results in no loss in generality. 

De f in i t i on  (Herbrand structures) 

Let F be a closed formula in Skolem form. Then every structure .A = 
(Uct, IA) is called a Herbrand structure for F if the following hold: 

1. = D ( F ) ,  

2. For every k-ary function symbol f occurring in F, and for all terms 
t l , t 2 , . . . , t k  e D(F), fA( t l , t2 , . . . , t k )  = f ( t l , t2 , . . . , t k ) .  

E x a m p l e :  A Herbrand structure A = (UA,I~t) for the above example 
formula F would have the following properties. 

and 

U.4 = D(F) = {a, f(a), g(a, a), . . .}  

f'A(a) - f(a) 

f'A(f(a))- f(f(a)) 

f'a(g(a ,a)) - f(g(a,a)) 
etc. 

The choice of p.4 is still free. For example, we could define 
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( t l , t2 , t3)  e p.a if and only if g(t l , t2)  = g(t2, f( t3)) .  

This Herbrand structure .4 would not be a model for F ,  because for tl  = a, 
t2 = f (a) ,  t3 = g(a, a) we have that  g(a, f (a))  r g( f(a) ,  f (g(a,  a))). 

E x e r c i s e  72: Define a Herbrand structure for this example formula which 
is a model (i.e. modify the definition of p.a). 

In Herbrand structures the choice of the universe and the interpretation of 
the function symbols is fixed by definition. What  can be chosen freely is 
the interpretat ion of the predicate symbols. 

At this point, the reader should not proceed before the subtle meaning 
of clause 2 in the definition of Herbrand structures is understood. There, 
in a sense, syntax and semantics of terms are synchronized. Terms are 
interpreted by "themselves". That  is, in a Herbrand structure .4, for every 
variable-free term t we have A(t)  = t. 

Therefore, for Herbrand structures the translation lemma (see Exer- 
cise 58) gets the following simplified form 

A(F[x/t])  = A[=/t](F) 

tha t  we will use in the following. 

We call a Herbrand structure of a formula F a Herbrand model for F,  
simply if it is a model for F. 

T h e o r e m  

Let F be a closed formula in Skolem form. Then F is satisfiable if and only 
if F has a Herbrand model. 

P r o o f :  It is clear that  a formula with a Herbrand model is satisfiable. 

Conversely, let A = (U.a, I.a) be an arbitrary model for F.  If there is 
no occurrence of a constant symbol in F (this is the special case in the 
definition of D(F) ) ,  then we extend ,4 by the commitment  

a "a -- m, 
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where m is an arbitrary element of U.a. This modification of .,4 does not 
change the property of being a model. Now, we define a Herbrand structure 
B - (Ut3,//3) for F.  By the definition of Herbrand structures, it remains to 
define how to interpret the predicate symbols of F as predicates over the 
Herbrand universe D(F). Let P be any n-ary predicate symbol in F,  and 
let t l , t 2 , . . . , t n  E D(F). (Observe that by the above modification of A, 
.A( t l ) , . . .  ,.A(tn) are well defined elements of UA). Now we define 

( t l , t 2 , . . . , t n )  E pB if and only if 

(A(t i) ,A(t2) ,  . . .  ,A(tn)) E P a  

Hence, the definition of pB "imitates" the definition of p~t, by first trans- 
forming the arguments t 1 , . . . ,  tn E D(F) = Ut3 into the universe of.A, and 
then applying p.a. 

Now we claim that  B is a model for F. Actually, we show a stronger 
statement:  For every closed formula G in prenex form without existential 
quantifiers that  is built up from the same components as F (function sym- 
bols and predicate symbols), if A ~ G then B ~ G. Then the first claim is 
the special case F = G in the the second claim. The proof is by induction 
on the number n of universal quantifiers in G. 

In the case n = 0, G does not contain a universal quantifier. Then G 
does not contain a variable. Therefore, immediately from the definition of 
B, we even get A ( G ) =  B(G). 

If n > 0, then let G be a closed formula in prenex form with n universal 
quantifiers in the prefix (and no existential quantifiers). Then G has the 
form VxH where H has only n -  1 universal quantifiers. We cannot apply 
the induction hypothesis to H directly because H is not necessarily closed 
(x could occur free in H). By hypothesis, .A ~ G, therefore, for all u E U.a, 
.A[,/u](H) = 1. In particular, for all u E U.a of the special form u = .A(t) for 
some t E D(G), we have .A[,/,,](H) = 1. In other words, for all t E D(G), 
we have .A[,/.a(t)](H) = .A(H[x/t]) = 1 (by translation lemma). Using the 
induction hypothesis, B(H[x/t]) = 1 for all t E D(G). Using the translation 
lemma again, we have that for all t E D(G), B[~:/t](H) = B(H[x/t]) = 1. 
Hence, B(VxH) = B(G) = 1. [] 

The reader should convince himself that it is relevant for the proof that  the 
formula F is closed, and that F does not contain an existential quantifier. 
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C o r o l l a r y  (L5wenheim-  Skolem) 

Every satisfiable formula in predicate logic has a model which is countable 
(i.e. it has a countable universe). 

P roof :  Using the methods of Section 2.2, every formula F in predicate 
logic can be transformed into a s-equivalent closed formula G in Skolem 
form. Furthermore, these transformations are such that every model of G 
is also a model of F.  Since F is satisfiable, G is satisfiable. Therefore, G 
possesses a Herbrand model which is, by the above, also a model for F. 
This Herbrand model has the universe D(G) which is countable, tt 

De f in i t i on  (Herbrand expansion) 

Let F = VylVy2.. .VynF* be a closed formula in Skolem form. Then E(F), 
the Herbrand expansion, is defined as 

E(F) = {F*[yl/tl][y2/t2]"" [y,/t,] ltl, t2,..., t .  e D(F)}  

That  is, the formulas in E(F) are obtained by substituting the terms in 
D(F) in every possible way for the variables occurring in F*. 

E x a m p l e :  For the above mentioned formula 

F = VxVyVzP(x ,  . f (y) ,  g(z, x)) 

we obtain the following first elements of E(F) ,  

P(a, f(a), g(a, a)) using 

P(f(a),f(a),g(a, f(a))) using 

P(a,f(f(a)),g(a,a)) using 

P(a,f(a),g(f(a),a)) using 

P(g(a, a), f(a), g(a, g(a, a))) using 

etc. 

[~/a] [~1"] [z/a], 
[~/.t'(a)] [y/a] [zl.], 
[~/a] [~/.f(.)] [z/a], 
[x/a] [y/a] [z// f(a)], 
[x/g(a, a)] [y/a] [zla], 

One should observe that the formulas in E(F) can be treated as formulas 
in propositional logic because they do not contain variables. In a sense, 
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instead of A1,A2, . . .  another vocabulary is used. To define a structure 
suitable for all formulas in E(F)  it suffices to specify the truth values of 
the atomic formulas in E(F) .  The terms (occurring within the atomic 
formulas) play no role here, and need not be interpreted. 

T h e o r e m  (GSde l -  H e r b r a n d -  Skolem) 

For each closed formula F in Skolem form, F is satisfiable if and only if 
the set of formulas E(F)  is satisfiable (understood as a set of formulas in 
propositional logic). 

P roof :  It suffices to show that F has a Herbrand model if and only if E ( F )  
is satisfiable. Let F have the form F = VyaVy2 .. .  VynF*. Then we get: 

.A is a Herbrand model for F 

iff for all tl ,  t 2 , . . . ,  tn E D(F),  

�9 A[y,/tll[y2/t2l...[y./t.l(F*) : 1 
iff for all t l, t 2 , . . . ,  t,~ E D(F),  

A(F*[y,  ltl][y2/t2] . . . [Ynltn]) = i 

iff for all G E E(F) ,  .A(G)= 1 

iff .A is a model for E(F) .  

(translation lemma) 

This theorem says, in a sense, that predicate logic can be "approximated" 
by propositional logic. The formula F in predicate logic is associated with 
E(F) ,  a collection of formulas in propositional logic. The cardinality of 
E ( F )  in general is infinite. But by enumerating bigger and bigger finite 
subsets of E(F) ,  F can be approximated (or better: the question of F ' s  
satisfiablity can be approximated). 

The issue of finite subsets of infinite sets of formulas in propositional 
logic brings up the possibility of applying the compactness theorem proved 
in Section 1.4. This is done in the following theorem. 

Herbrand ' s  T h e o r e m  

A closed formula in Skolem form is unsatisfiable if and only if there is a 
finite subset of E(F)  which is unsatisfiable (in the sense of propositional 
logic). 
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Proof :  A direct combination of the previous theorem and the compactness 
theorem for propositional logic (Section 1.4). �9 

Based on Herbrand's theorem, so-called semi-decision procedures for 
predicate logic can be formulated. A semi-decision procedure for a problem 
(as introduced in Section 2.3) is understood as a program that  stops exactly 
for those instances after finitely many steps for which the question has to 
be answered "yes". 

The following is a semi-decision procedure for the unsatisfiability prob- 
lem. Its correctness follows immediately from Herbrand's theorem. For the 
presentation of the program, we think of the formulas in E ( F )  as being 
enumerated: 

E ( F )  = { F I ,  F2, . . . ,  Fn, . . .) 

Because Gilmore was one of the first to implement a simple semi-decision 
procedure for predicate logic based directly on Herbrand's theorem, we call 
the following procedure G i l m o r e ' s  procedure.  

G i l m o r e ' s  P r o c e d u r e  

I n s t a n c e :  A closed formula F in Skolem form (every formula 
in predicate logic can be transformed into a s-equivalent 
formula of this kind, cf. Section 2.2). 

n := 0; 

r e p e a t  n := n + 1; 

u n t i l  (F1AF2A. . .AFn)  is unsatisfiable (this can be tested with 
the tools of propositional logic, e.g. using truth tables) ; 

output "unsatisfiable" and halt; 

This program has the property that  it stops after finitely many steps on 
every unsatisfiable formula as input, and for satisfiable formulas, it does 
not stop. This is exactly what is needed for semi-decidability: on the "yes- 
instances" the program stops, but not on the "no-instances." By testing 
~ F  for unsatisfiability, we obtain a semi-decision procedure for validity. 
Therefore, we can summarize: 
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T h e o r e m  

1. The unsatisfiability problem for formulas in predicate logic is semi- 
decidable. 

2. The validity problem for formulas in predicate logic is semi-decidable. 

E x e r c i s e  73: Show that  the notion of semi-decidability introduced here 
is equivalent to the notion of recursive enumerabili~y. A set M (the set of 
yes-instances of a given problem) is recursively enumerable if M = 0 or if 
there is a total function f which is effectively computable such that  M = 
{f(1), f(2),  f ( 3 ) , . . . } .  In the example above, the set M would be the set of 
unsatisfiable formulas in predicate logic. 

E x e r c i s e  74: Show that  a problem is decidable if and only if it is recursively 
enumerable (see last exercise) in such a way that  the enumerating function 
is nondecreasing: f (n)  ~ f (n  -t- 1) for all n. 

E x e r c i s e  75: Show that  the PCP (see Section 2.3) is semi-decidable. 

Combining the unsatisfiability test and the validity test, we can obtain a 
procedure which stops on the unsatisfiable formulas and on the valid formu- 
las (with respective output  "unsatisfiable" or "valid"). Furthermore, one 
could patch a third procedure which on a given input formula F system- 
atically searches for models of finite cardinality n - 1, 2, 3, . . . .  Combined 
this gives a procedure that  stops after finitely many steps when applied to 
formulas in the marked areas - with corresponding output.  



78 CHAPTER 2. PREDICATE LOGIC 

I /  
/ /  
/ /  
I /  
/ /  
/ /  
/ 

all formulas in predicate logic 

satisfiable,but not 
valid formulas 

with infinite models , / 

,,// / 
, / 

satisfiable, but not 
valid valid formulas unsatisfiable 

formulas with finite models formulas 

The white area in the diagram could be reduced further somewhat (e.g. for 
formulas of certain syntactical properties), but it can never be eliminated or 
become finite. This would be in contradiction to the undecidability result 
proved in Section 2.3. 

2.5 R e s o l u t i o n  

The tests for unsatisfiability on the finite subsets of E(F) which have to 
be performed in Gilmore's procedure could as well be implemented by res- 
olution. For this, we have to presuppose that the matrix of F is in C N F .  
(This can always be achieved, see Sections 1.2 and 2.2). All formulas in 
E(F) result from certain substitutions for the variables in F*. Therefore, 
all formulas in E(F) are in C N F  provided that F* is in C N F .  

If a formula G results from certain substitutions from a formula F,  then 
G is called an instance of F.  Substitutions which make a formula variable- 
free (like in the definition of E(F)) are called ground substitutions, and the 
result of applying a ground substitution to a formula is a ground instance 
of that formula. Thus, the following modification of Gilmore's procedure is 
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called the ground resolution procedure. Its correctness follows immediately 
from the correctness of Gilmore's procedure. 

In the following, we assume again that E(F) is enumerated as F1, F2, . . . .  
(Remember that Res*() was defined in Section 1.5.) 

G rou n d  Reso lut ion  Procedure  

Instance: a closed formula F in Skolem form 
with its matrix F* in C N F  

i := 0; 
M := q); 
r e p e a t  

i : = i + 1 ;  
/ := M U { F / } ;  
M := Res*(M); 

unti l  D E M; 
Output  "unsatisfiable" and halt; 

Combining Herbrand's Theorem and the resolution theorem of propo- 
sitional logic, we obtain the following theorem. 

T h e o r e m  

Using as input any closed formula F in Skolem form where the matrix F* 
is in C N F ,  the ground resolution procedure stops after a finite number of 
steps if and only if F is unsatisfiable. 

Similar to the resolution algorithm in propositional logic, it is usually the 
case that more elements are generated in M than are really needed for 
the "demonstration" of unsatisfiability of the input formula F (and in the 
case of a satisfiable formula as input, in general infinitely many elements 
are generated in M). Relevant for the demonstration of unsatisfiability are 
such formulas occurring in the resolution graph of the first finite subset of 
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E(F)  which is unsatisfiable. For such a "demonstration" of unsatisfiability 
of F,  it suffices to specify certain ground substitutions for F* first (leading 
to certain elements of E(F))  and then to present a resolution proof based 
on these ground instances. 

E x a m p l e :  Consider the following unsatisfiable formula 

F = W ( P ( ~ )  ^ -~P(f(~))) .  

Here we have, 
F* = (P(~)  ^ -~P(f(~))) ,  

which is written in clause form, 

F" = { {P (~ ) } ,  { -~P(f (~) )}} .  

Furthermore, 

E(F)  = {(P(a) A --',P(f(a))), (P( f (a))  A ~P( f ( f (a ) ) ) ) ,  . . .}. 

Already the first two ground substitutions [z/a] and [z/f(a)] lead to a finite 
unsatisfiable clause set. This corresponds to the first two formulas in E(F),  
which form four clauses as listed below. 

{P(a)} (-~P(f(a))} (P(f(a))} {~P(f(f(a)))} 

In this example, already two clauses are generated (as part of the first and 
second formulas in E(F))  which are not needed for the resolution refutation. 
Therefore, we conclude that it suffices to consider ground substitutions that 
are applied individually to the clauses of the original formula F*. 

We express this situation by the following diagram where vectors are 
used to express (ground) substitutions. 
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clauses in F* 

ground substitutions 

certain ground instances 

of the clauses in F* 

resolution of the 
empty clause 

{P(*)} {-~Ptf(*))} 

[~//(~)] 

{P(f(a))} {--,P(f(a))} 

[~,/,:,] 

Let us consider a more complex example. Let 

F = VxVy((--,P(z) V ~P(f(a)) V Q(y)) A P(y) A (~P(g(b, z)) V--,Q(b))). 

Then we obtain the following clause representation of F*, 

F* = {{--P(z), ~P(f(a)), Q(y)}, {P(y)}, {---,P(g(b, x),--,Q(b)}}. 

This formula F is unsatisfiable. A proof for the unsatisfiability of F is given 
by the following diagram. 

{~P(x),--,Pq f(a)), Q(y)} ~ {--,P(g(b, z.)), --Q(b)} 

I~/,co)] [~/b] [~/s 7 k~~cb, ~)1 [~/< 

{--,P(f(a ), Q(b)} {P(f(a))} { P ( g ( b , ~  a)), -,Q(b)} 

[] 

Again, vectors denote ground substitutions. In this example two new as- 
pects occur. First, it might be necessary to use the same clause in F* 
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to derive several ground instances from it to enable the resolution refuta- 
tion. (This is the case for the clause {P(P)}). Second, from an n-element 
clause an try-element clause can be obtained after the ground resolution step 
(m ~_ n). We get m < n if certain literals in the original clause become 
identical after the substitution, and by the set representation melt into a 
single element. (This is the case for the clause { ~ P ( z ) , ~ P ( f ( a ) ) ,  Q(v)} 
and the substitution [ z / f ( a ) ] [ y / b ] ) .  

We summarize our observations in the following theorem. 

Theorem (ground resolution theorem) 

A closed formula F in Skolem form F = VyIVy2...Vyk F* with its matrix 
F* in CNF is unsatisfiable if and only if there exists a finite sequence of 
clauses CI, C2,..., Cn with the properties 

C, is the empty clause, and for i- I,..., n, 

either Ci is a ground instance of some clause C E F*, 
i.e. Ci has the form Ci = C [ y ~ / t l ] [ y 2 / t 2 ] . . "  [Yk/tk] 
where t l ,  t2, . . . , tk E D ( F ) ,  

or Ci is a resolvent (in the sense of propositional logic) 
of two clauses Ca and C~ with a, b < i. 

Exercise 76: Formalize the following statements 1 and 2 as formulas in 
predicate logic 

(a) The professor is happy if all his students like logic. 

(b) The professor is happy if he has no students. 

and show, by ground resolution, that (b)is a consequence of (a). 

The algorithmic selection of ground instances of F* which allows one to per- 
form a resolution refutation afterwards, does not seem to be programmable 
in a "controlled" way, just by exhaustive search. The problem is that cer- 
tain decisions for substitutions have to be done in a "lookahead" manner 
to enable resolution steps further "down" in the resolution graph. This 
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difficulty suggests a modification, namely not to perform all substi tutions 
in the beginning, but rather in a successive "on demand" manner.  Here, 
the demand comes from the resolution step that  directly follows. But this 
requires that  resolution steps be performed with clauses in predicate logic. 

Now we introduce the predicate logic version of resolution which was 
invented by J. A. Robinson. The new idea is to resolve clauses in predicate 
logic to clauses in predicate logic where each resolution step is accompa- 
nied by a substitution. These substitutions are performed in a guarded 
manner.  For example, in the case of the two clauses {P(x) , -~Q(g(x))}  and 
{-~P(f(y))} ,  it suffices to use the substi tution [z/ f(y)]  to obtain the resol- 
vent {-~Q(g(f(y))}.  There is no need at this point to substi tute anything 
for the variable y. 

Central for the following investigations is the search for a substi tut ion 
which unifies two or more literals, i.e., makes them identical. In the above 
example, [x/f(y)]  unifies the two literals P(x)  and P( f (y ) ) .  The substitu- 
tion [x/f(a)][y/a] would also be a unifier but does not satisfy the definition 
of a mos~ general unifier. In a sense (defined formally below), this substi- 
tut ion makes more substitutions than necessary. 

D e f i n i t i o n  (unifier, most general unifier) 

A substi tut ion sub is a unifier for a (finite) set of literals L = { L1, L 2 , . . . ,  Lk }, 
if Ll sub - L2sub - . . .  - Lksub. 

That  is, by applying sub to every literal in the set L, one and only one 
literal is obtained. If Lsub expresses the set obtained by applying sub to 
every literal in the set L, then this situation can be formally expressed by 
[Lsub[ -  1. If a substi tut ion sub exists with the property that  I L s u b l -  1, 
then we say L is unifiable. 

A unifier sub for some literal set L is called a most general unifier if for 
every unifier sub' there is a substi tut ion s such that  sub'=sub s. (Here, the 
equality sub'=sub s means that  for every formula F, Fsub '=Fsub s). 

The following diagram describes the situation. 
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sub 

S 

Uni f i ca t ion  T h e o r e m  (Robinson) 

Every unifiable set of literals has a most general unifier. 

P roo f :  We prove this theorem constructively in the sense that an algorithm 
is presented, which takes as input a set of literals L, and terminates after 
finitely many steps either with the output "unifiable" or "non-unifiable". 
Further, in the case of unifiability, it also outputs a most general unifier. A 
proof of correctness of such an algorithm is also a proof for the assertion of 
the theorem. Now we describe this algorithm. 

Unification A l g o r i t h m  

Instance: A non-empty set of literals L. 

sub := []; (this is the empty substitution) 
whi le  ILsub[ > 1 do 

begin 
Scan the literals in Lsub from left to right, until the first 
position is found where in at least two literals (say, L1 and 
L2) the corresponding symbols are different ; 
if  none of these symbols is a variable t h e n  

output "non-unifiable" and halt 
else 

beg in  
Let �9 be the variable, and let t be a term that is 
different from x and which starts at this position 
in another literal (this can also be a variable) ; 
if x occurs in t t h e n  

output "non-unifiable" and ha l t ;  
else sub := sub[x/t]; 

(this means the composition of the sub- 
stitutions sub and [z/t]) 
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e n d  
end ;  

output  sub as a most general unifier of L ; 

For the correctness of this algorithm, we first observe that  it always ter- 
minates,  because in each application of the whi le  loop another variable 
x is subst i tuted by a term t (in which x does not occur). Therefore the 
number of different variables occurring in Lsub decreases by 1 in each step. 
Hence there are at most as many applications of the wh i l e  loop as there 
are different variables in L in the beginning. 

If the algorithm terminates successfully and leaves the wh i l e  loop, then 
the output  sub must necessarily be a unifier for L, because the wh i l e  loop 
is only left if ILsubl = 1. Since we have shown that  the algorithm always 
terminates,  in case of a non-unifiable clause set L as input, the algorithm 
necessarily has to stop inside the whi le  loop and outputs correctly "non- 
unifiable". 

It remains to show that  in case of a unifiable set of literals L as input, 
indeed a mosl general unifier is produced. Let subi be the substi tut ion 
which is obtained after the ith application of the wh i l e  loop. Then we 
have subo=[ ]. We show by induction on i that  in case of a unifiable set of 
literals L, for every unifier sub' of L, there is a substitution si such that  
sub' - subi si, and that  the wh i l e  loop is either successfully left in the i-th 
step, or both e lse  branches in the whi le  loop are entered (in which case 
the w h i l e  loop can be executed for another time.) From this, it follows 
that  the wh i l e  loop is finally left successfully, say after the n-th loop, and 
the output  subn satisfies the definition of a most general unifier. 

If i = 0, then we let So = sub'. Then we have sub'=so=[]So=subo So. 

For i > 0, let s/-1 be the substitution which exists by induction hypoth- 
esis with sub' - s u b i _ l S i _ l  . Now, either ]Lsubi_ll - 1, and the wh i l e  loop 
is left successfully, or ILsubi_ll > 1 and the whi le  loop is entered for the 
i-th time. By the fact that  ILsubi_11 > 1 and since subi_l can be extended 
to a unifier of L by applying si-1, there must exist some variable x and 
a different term t (at a position where two literals L1 and L2 in Lsubi_l 
differ) so that  x does not occur in t. Therefore both else branches will be 
entered. Hence, si-1 unifies x and t, i.e. xsi_l - t s i - 1 .  Furthermore, subi 
is then set in the i-th loop to subi_l[x/t]. Now we modify the substi tut ion 
si-1 so that  we take out any replacement for the variable x (but all other 
substi tut ions in si-1 remain.) Let the result of this restriction be si. We 



86 CHAPTER 2. PREDICATE LOGIC 

claim that si has the desired properties. We have 

subisi - ~ b i _ l [ , / t ] ~ i  
= ~ b ~ _ ~ , ~ [ , / t ~ ]  
= s u b i _ l s i [ z / t s i _ l ]  
: s u b i - l S i - 1  

--. s B b  t 

because z is not substituted in si 
because z does not occur in t 

because xS~_ l = ts~_ l 
and the definition of si 

by induction hypothesis 

This completes the proof of the unification theorem. 

E x a m p l e :  We want to apply the unification algorithm to the set of literals 

L - {--,P(f(z, g(a, y)), h(z)), ~P( f ( f ( u ,  v), w), h(f(a, b)))). 

Then we obtain in the first step 

~P( f ( z ,  g(a, y)), h(z)) 
~P( f ( f ( u ,  v), w), h(f(a, b))) 

T 

which results in the substitution sub - [z/f(u, v)]. In the second step, after 
applying sub, we obtain: 

~P( f ( f ( u ,  v), g(a, y)), h(f(u, v))) 
~P( f ( f ( u ,  v), w), h(f(a, b))) 

T 

Therefore, the substitution is extended by [wlg(a , y)]. Next, we obtain 

~P( f ( f (u ,  v), g(a, y)), h(f(u, v))) 
~P( f ( f ( u ,  v), 9(a, y)), h(f(a, b))) 

T 

Now sub is extended by [u/a]. In the fourth step 

-~P(f(f(a, v), g(a, y)), h(f(a, v))) 
~P( f ( f (a ,  v), g(a, y)), h(f(a, b))) 

T 

we obtain the final substitution sub - [zlf(u, v)][wlg(a, y)][u/a][v/b]. This 
is a most general unifier for L, and we have 

Lsub - {~P( f ( f (a ,  b)), g(a, y)), h(f(a, b)))}. 
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Observe that  sub is not a ground substitution for L since the variable y still 
occurs in Lsub. 

In some situations, it is desirable to write down substitutions in a "disen- 
tangled" way so that  all partial substitutions can be applied in any order - 
or in pa ra l l e l -  without changing the result. A disentangled version of the 
above substitution sub is 

sub - [z / f (a ,  b)][w/g(a, y)][u/a][v/b]. 

E x e r c i s e  77: Show how for two disentangled substitutions sub and sub ~, 
their concatenation sub sub ~ can be disentangled again. 

E x e r c i s e  78: Apply the unification algorithm to the set of literals 

L = { P ( x , y ) , P ( f ( a ) , g ( x ) ) , P ( f ( z ) , g ( f ( z ) ) ) } .  

E x e r c i s e  79: Show that the unification algorithm (implemented in a 
straightforward way) can have exponential running time. 

Hint: Consider the example 

L -  { P ( x l , x 2 , . . . , X n ) , P ( f ( X o , X o ) , f ( X l , X l ) , . . . , f ( x n - I , X n - 1 ) ) ) .  

Think of a data structure for literals and sets of literals which allows a more 
efficient implementation of the unification algorithm. 

E x e r c i s e  80: In some implementations of the unification algorithm (e.g. 
in interpreters for the programming language PROLOG), by efficiency rea- 
sons, the test "does x occur in t" is left out (the occurrence check). 

Give an example of a 2-element set L = {L1, L2} which is not unifiable. 
Let L1 and L2 have no variables in common, and (still!) a unification 
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algorithm without occurrence check gets into an infinite loop (or erroneously 
outputs that L is unif iable-  depending on the implementation). 

Using the unification principle, we are now in a situation to formulate 
the resolution principle for predicate logic. 

Def in i t i on  (resolution in predicate logic) 

Let C1, C~ and R be clauses (in predicate logic). Then R is called a resolvent 
of C1, C2 if the following holds. 

1. There exist certain substitutions sl and s2 which are variable renam- 
ings so that  Cls l  and C2s2 do not contain the same variable. 

2. There is ase t  ofliterals Lx, . . . ,Lm E Cxsl (m >__ 1) and L ~ , . . . , L ' ,  E 
C2s2 (n >_ 1), such that L -- {L1,L2,... ,Lm,L'I,L'2,..., L~} is unifi- 
able. Let sub be a most general unifier for L. 

3. R has the form 

R - -  ( ( C 1 8 1  - {L1, . . .  ,Lm})U (C2s2 - { L i , . . .  ,L '}))sub.  

We express the situation described by the definition by the following dia- 
gram. 

c ,j2 
R 

For better legibility, the literals L1 , . . . ,  Lm,L'I,. . . ,  L" can be underlined, 
and the substitutions used can be noted beside the diagram. 
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E x a m p l e :  

{P( f (x ) ) , - ,Q(z ) ,  P(z)} {-~P(z), R(g(x), a)} 

" N f  

a ) }  

R e m a r k :  The resolution calculus in propositional logic can be understood 
as a special case of resolution in predicate logic where sl = s2 = sub = [] 
and m = n = 1. Therefore, we adopt the notation introduced for the 
resolution in the propositional calculus, and extend the notion Res(F) also 
for clause sets in predicate calculus: 

Res(F) 

Res~ 
Res"+l(F) 

and 

Res*(F) 

- F U { R I  R i s a r e s o l v e n t  

of two clauses C1, C2 E F},  

- F ,  

- = > 0,  

U Res"(F). 
n > 0  

As in propositional logic, it is clear that [] E Res* (F) if and only if there is a 
sequence C1, C2 , . . . ,  Ca of clauses such that Ca - 0, and for i - 1, 2 , . . . ,  n, 
Ci is either element of F or Ci is resolvent of two clauses Ca and Cb with 
a,b< i. 

Exerc i se  81: Find all resolvents of the following two clauses C1 and C2. 

Cl - {--,P(x, y), ~P(f(a), g(u, b)), Q(x, u)} 

C2 ~ -  {P( f ( z ) ,  g(a, b)),--,Q(f(a), b), ~Q(a, b)) 

As preparation for the proof of the resolution theorem, we show how 
resolutions in propositional calculus (for ground instances of clauses in pred- 
icate logic) can be "lifted" to certain resolutions in predicate logic. This 
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"Lifting-Lemma" allows us to transform a resolution refutation on clauses 
in propositional logic to a resolution refutation on clauses in predicate logic. 

L i f t i n g - L e m m a  

Let C1, C2 be two clauses in predicate logic und let C~, C~ be two arbitrary 
ground instances thereof which are resolvable (in the sense of propositional 
logic). Let R' be a resolvent of C~, C~. Then there exists a clause R which 
is resolvent of C1, C2 (in the sense of predicate logic) so that R' is a ground 
instance of R. 

The following two pictures demonstrate the situation. 

C1 C2 

cl 

R' 

A s s u m p t i o n  of  t he  L i f t i n g - L e m m a  

CI C2 

R 

R' 

Conc lus ion  of  the  L i f t i n g - L e m m a  
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Proof i  First, let 81 and s2 be variable renamings such that Clsl  and C2s2 
do not have a variable in common. Since C~ and C~ are ground instances 
of C1 and C2, they are also ground instances of Cls l  and C2s2. Let subl, 
sub2 be ground substitutions such that C~=Clslsubl and C~=C2s2sub2. 
Since there is no variable which is replaced in both substitutions subl and 
sub2, we let sub=sublsub2, and we get C[=Clsisub and C~=C2s2sub. By 
assumption, C~ and C~ have some resolvent R' (in propositional logic). 
Therefore, there must be a literal L E C~ such that L E C~ and R' = 
(C~ - {L})U (C~ - {L}). The literal L results from one or more literals in 
Clsi  by the ground substitution sub. The same holds for L and C2s2. Hence 
there are literals L i , . . . , L , ,  6 Cis~(m > 1) and L ~ , . . . , L ~  E C2s2(n > 1), 
such that L - Llsub - . . . -  L,,sub and L - Flsub - . . . -  L~sub. 
Therefore, ClSl, C2s2 (and also C1, C2) are resolvable, because sub is a 
unifier for the set of literals 

L - {Li , . . . ,  Lm,L~ , . . . ,L ' } .  

Let subo be a most general unifier for L provided by the unification algo- 
rithm. Then, 

R -  ( ( C , , ,  - { L 1 , . . . ,  L ~ } ) u  ( C , , ,  - { L i , . . . ,  L ' } ) ) ,ub0  

is a (predicate logic) resolvent of Cis i ,  C2s2 (and also of Ci, C2). Since subo 
is a most general unifier and sub is a unifier of L, there exists a substitution 
s such that subo s=sub. Therefore, we get 

R' - (c~ - {L}) u (c~ - {z}) 

= ( c ~ ~ b  - {L})u ( c ~ ~ b  - {L}) 

= ( ( c ~ -  { L ~ , . . . , L ~ } )  u ( c ~  - { L ~ , . . . , L ' } ) ) ~ u b  

= ( ( C ~  - { L ~ , . . . ,  L ~ } )  u ( C ~  - { L ~ , . . . ,  L'}))~ub0~ 

: Rs 

This shows that R' is a ground instance of R (via the substitution s). 

Exerc i se  82: Consider the following ground resolution. 
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{ P ( x , y ) , P ( f ( a ) , z ) }  {-~P(f(~), g(y)), Q(~, y)} 

[~/.f(a)] 
[y/g(b)] 
[~/g(b)] 

[~/~] 
[y/b] 

{P( f (a) ,  g(b))} {~P( f (a) ,  g(b)), Q(a, b)} 

{Q(~,b)}  

Follow the proof of the Lifting Lemma, and find out which (predicate logic) 
resolution step is constructed from this. 

R e s o l u t i o n  T h e o r e m  (of predicate logic) 

Let F be a closed formula in Skolem form with its matr ix  F* in C N F .  
Then, F is unsatisfiable if and only if 0 E Res* (F*). 

P r o o f :  (Correctness) First we show that  [3 E Res*(F*) implies tha t  F is 
unsatisfiable. For a formula H with the free variables xl ,  x 2 , . . . ,  x ,  let VH 
denote its universal closure. This is the formula VH = VxxVx2. . .VxnH.  
Note that  F -- ACeF* VC. Now we show that  for every resolvent R of two 
clauses C1, C2, VR is a consequence of VC1A VC2. Then, it follows that  the 
empty clause is a consequence of F ,  and therefore, F is unsatisfiable. 

Let Jt  be a structure such that  ~(VC1) = A(VCz) = 1. Let the resolvent 
R have the form 

R - ( ( c , ~ , -  { L , , . . . , L ~ } ) u ( C ~ -  { L i , . . . , L ' } ) ) ~ b  

= ( C ~ ~ b  - { L } ) u  ( C ~ 2 ~ b  - {~}), 

where sub is a most general unifier of L - { L 1 , . . . ,  Lm, L~, . . . ,  L~ }, and L 
= L l s u b - . . . -  L m s u b -  L ~ s u b - . . . -  L~sub. Assume t h a t . A ( V R ) -  0. 
Then there exists a structure A' with j t ' (R)  - 0, where ,4' is the same as 
jr, but additionally has suitable interpretations for the variables tha t  occur. 
Then we have . 4 ' ( C l s l s u b - { L } )  - 0 and .4 ' (C2s2sub-{L})  - O. Because 
of 1 - A'(ClSlSub) - .4'(C2s2sub), it follows that  J t ' (L)  - j t ' (L )  - 1. 
This is a contradiction which shows that  jt(VR) - 1. 
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(Completeness) Suppose that F is unsatisfiable. Using the ground res- 
olution theorem, there is a sequence of clauses (C~, C~, . . . ,  C ' )  such that 
C" = [3, and for i=  1, 2 , . . . ,  n, C' either is ground instance of some clause 
in F* or C~ is a (propositional logic) resolvent of two clauses C" and C~ 
with a, b < i. For i - 1, 2 , . . . ,  n we now construct a sequence Ci of pred- 
icate logic clauses where Cn - [] which demonstrates that [] 6 Res*(F). 
If C' is a ground instance of some clause C 6 F*, then we choose Ci = C. 
If C~ is resolvent of two clauses C" and C~ with a, b < i, then we have 
already determined the clauses Ca and Cb such that C" and C~ are ground 
instances thereof. By the Lifting Lemma, we can find a clause Ci which 
is resolvent of Ca and Cb, and such that C' is ground instance of Ci. The 
sequence (Cl, C2 , . . . ,  C,,) that is obtained shows that [3 6 Res* (F). �9 

Example :  The clause set 

F ._. { {-~P(x), Q(x), R(x, f(x))}, {-~P(x), Q(z), S(f(x))},  {T(a)}, 

{P(a)}, {~R(a, z), T(z)}, {~T(x),~Q(x)}, {-~T(y),-~S(y)}} 

is unsatisfiable. A deduction of the empty clause is given by 

(1) {T(a)} clause in F 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(s) 

(9) 

(10) 

(11) 

(13) 

{--,T(x), ~Q(x)} 

{-~Q(a)} 

{~P(x),  Q(x), s ( f (x) )}  

{P(a)} 

{-~P(x), Q(x), R(x, f(x))} 

{Q(a), R(a, f(a))} 

{R(a,f(a))} 

{~R(a,z) ,T(z)} 

{T(f(a))} 

{-~T(y),-~S(y)} 

clause in F 

resolvent of (1) and (2) 

clause in F 

clause in F 

   olvent of (4) (5) 

resolvent of (3) and (6) 

clause in F 

resolvent of (5) and (8) 

resolvent of (3) and (9) 

clause in F 

resolvent of (10) and (11) 

clause in F 
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(14) {--,S(f(a))} 

(15) D 

resolvent of (12) and (13) 

resolvent of (7)and  (14) 

Exerc i se  83: For finite clause sets F in propositional logic, Res*(F) is 
always a finite set. Show that there are finite clause sets F in predicate 
logic such that for all n, 

Res" (F) =/= Res* (F). 

Example"  To demonstrate the use of the resolution calculus for automated 
theorem proving, we consider the following example from group theory. Let 
o be the group operation. By P(x,  y, z) we express that x o y - z. Then 
the axioms of group theory can be expressed by the following formulas. 

(1) VxVy3zP(z, y, z) 
(closure under o) 

(2) VuVvVwVzVyVz((P(z, y, u)AP(y, z, v))--4 (P(x, v, w) ~ P(u, z, w))) 
(associativity) 

(3) 3x(VyP(x, y, y) A Vy3zP(z, y, x)) 
(existence of a left-neutral element 
and existence of left-inverses) 

Now we want to prove that the existence of right-inverses follows from (1), 
(2), and (3). This is expressed by the following formula (4). 

(4) 3x(VyP(x, y, y) A Vy3zP(y, z, x)) 

Converting (1) A (2)A (3)A-,(4) into clause form gives 

(~) {P(~, u, m(~, v)} 

(b) {~P(~, u,-), ~P(u, ~, ~), ~P(~, ~, w), P(~, ~, w)} 

(c) {--,P(x, y, u), --,P(y, z, v), --,P(u, z, w), P(x, v, w)} 

(d) {P(e, y, y)} 
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(e) { P(i(y), y, e) } 

(f) { -~P(x , j (x ) , j ( x ) ) ,~P(k(x ) , z , x ) }  

Here, m (2-ary), e (0-ary), i (1-ary), and k (1-ary) are newly introduced 
Skolem functions. A resolution refutation from (a)-(f), and therefore, a 
proof of unsatisfiablity is given by the following diagram (which happens 
to be a linear chain). 

(f) (d) 

{-~P(k(e),z,e)} 
/ / ( b )  

{-~P(x, y, k(e)), -~P(y, z, v), -~P(x, v, e)} 

~ (e) 

{-~P(i(v), w, k(e)), -~P(w, z, v)} 

/ ( d )  

{-~P(i(v),e,k(e))} 

~ (~) 

{-.P(i(t). y. ~). -,P(y. ~, ~), -,P(u, ~, k(~))} 
/ ( d )  

{-,P(i(t). y. ~). -,P(y. k(~). ~) } 
/ /  (~) 

{-~P(i(t), i(k(e)), e)} 
/ (~) 

Cl 

Exerc i se  84: Show that the following are consequences of the above men- 
tioned axioms of group theory. 
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(a) There exists a right-neutral element. 

(b) If G is an Abelian group, then for all x, y in G, x o y o x -  1 - - y .  

Exerc i se  85: Express the following facts by formulas in predicate logic. 

(a) Every dragon is happy if all its children can fly. 

(b) Green dragons can fly. 

(c) A dragon is green if it is a child of at least one green dragon. 

Prove by resolution that the conjunction of (a),(b) and (c) implies: all green 
dragons are happy. 

Exerc i se  86: Given are the following facts. 

(a) Every barber shaves all persons who do not shave themselves. 

(b) No barber shaves any person who shaves himself. 

Formalize (a) and (b) as formulas in predicate logic. Use B(x) for "x is 
barber", and S(x, y) for % shaves y". Convert into clause form and show 
by resolution that (c) is a consequence of (a) and (b). 

(c) There are no barbers. 

2.6 R e f i n e m e n t s  of  R e s o l u t i o n  

Although the predicate logic version of resolution constitutes a great im- 
provement as compared to the straightforward ground resolution procedure, 
there is a tremendous combinatorial explosion with which one has to deal. 
The problem is that, in general, there are many possibilities to find two 
resolvable clauses for producing new resolvents. Among this huge number 
of possible resolution steps, only a few might lead to the derivation of the 
empty clause (in case the clause set is unsatisfiable). Additionally, while 
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the resolution process proceeds, the number of clauses (and their lengths) 
increases further, which causes still more choices to be tried. 

We now present some possibilities of improving the efficiency of the 
general resolution algorithm. We call these refinements of resolution. We 
distinguish between strategies and restrictions. 

Strategies are just heuristic rules which prescribe the (deterministic) 
order through which the (nondeterministic) search space has to be explored. 
Hence, the size of the search space is not affected by a strategy. But for a 
clever strategy, there is some hope that only a small portion of the space 
has to be searched until a solution (a derivation of the empty clause) is 
found. In the worst case, the entire space has to be searched. 

An example is the unit preference strategy where, whenever possible, 
resolution steps are performed when one of the parent clauses is a unit, i.e. 
consists of one literal only. 

These strategies seem to work quite well in the examples studied, but 
there is little theoretical work which can be reported here. We just mention 
that such strategies can be combined with the resolution restrictions which 
will be discussed next. 

The resolution restrictions however simply forbid certain resolution 
steps if the clauses involved do not have a certain syntactic form, depending 
on the type of restriction. Therefore, the number of possible choices for the 
next resolution step is smaller as compared to the general case. Of course, 
the question to be investigated is whether such restrictions go "too far", 
so that the calculus loses the completeness property. (This would be the 
case if there is an unsatisfiable clause set such that the empty clause is not 
derivable under the respective restriction). 

We now present the different resolution restrictions that we will study 
in the following. 

The P-restriction (or just P-resolution) requires that at least one of 
the parent clauses has to be positive, i.e., consists of positive literals only. 
Analogously, the N-restriction (N-resolution) requires that at least one par- 
ent clause is negative. We will later show that P-resolution as well as N- 
resolution are complete. 

The empty clause is linearly resolvable from a clause set F,  based on a 
clause C E F,  if there is a sequence of clauses (Co, Cx , . . . ,  Cn) such that 
Co = C, Cn = t::l, and for i = 1, 2 , . . . ,  n, 
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Ci-1 Bi-1 

G 

where the clause Bi-1 (the so-called side clause) is either an element of F 
(i.e. an input clause) or Bi-1 = Cj for some j < i. 

We will show in this section that  linear resolution is complete, that  is, 
for every unsatisfiable clause set F there is a clause C E F (called the base 
clause) such that  the empty clause is linearly resolvable from F based on 
C. 

E x a m p l e :  Consider the unsatisfiable clause set 

F = {{A, B}, {A,-~B}, {~A, B}, {--,A,--B}}. 

The usual resolution refutation is given by the following diagram and takes 
3 resolution steps. 

{a, B) {A,-,B} {--,a, B} {-,A,-,B) 

A linear resolution of the empty clause from F,  based on {A, B}, is 
given by the following diagram (this is also an example for a P-resolution). 
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{A, B }  {A,-~B} {-~A,B} {-~A,~B} 

/ 

} 

\ 

o 

Observe that  this resolution refutation consists of 4 resolution steps. This 
suggests that  the price to be paid for the restriction in the number of 
nondeterministic choices is an increase in the proof length. This effect is 
not yet theoretically explored (cf. Exercise 87). 

For the set-of-support restriction of resolution one needs to know (e.g. 
from the context) a subset T of the clause set F such that  F -  T is satis- 
fiable. A resolution deduction of the empty clause from F,  relative to the 
set-of-support T, has to satisfy the requirement that  it is never the case 
that  two clauses from F - T are being resolved. This restriction can bring 
an advantage if T is relatively small (e.g. I T I -  1) and therefore, F - T is 
relatively big. Many potential resolution steps (between clauses in F -  T) 
can be avoided this way. A typical example is to test whether a given 
formula G follows from the "data base" (F1, F2,...,F,}. We know that  
this is the case if and only if the set (F1, F 2 , . . . ,  F, , -~G} is unsatisfiable 
(Exercise 3). If it is known from the context that  (F1, F2,..., F,} is satis- 
fiable, i.e., the data  base (or axiom system, if you prefer) is consistent - or 
if this consistency is just assumed, then one can choose as set-of-support 
T--- ( G 1 , . . . ,  Gk} where ( G ~ , . . . ,  Gk} is the clause representation of-~G. 
We will see later that  the set-of-support restriction of resolution is complete. 
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The input-restriction of resolution (or just input resolution) requires 
that in each resolution step, one of the parent clauses has to be an "input", 
i.e. an element of the original clause set F.  It is easy to see that an input 
resolution proof necessarily is a linear resolution proof. But in contrast to 
linear resolution, input resolution is not complete. The above discussed 
unsatisfiable clause set 

F = {{A, B}, {A,-~B}, {-~A,B}, {~A, ~B}}. 

is a simple counter example. In this example, the first resolution step 
produces a clause with a single literal. Each further step produces then, by 
the input restriction, single element clauses. Therefore, the empty clause 
is not derivable by input resolution. But, we will later see that input 
resolution is complete when restricted to clause sets which contain only 
Horn clauses. 

Another incomplete resolution restriction is unit resolution. Unit reso- 
lution is also complete for Horn clauses (see also Exercise 35). It is only 
allowed to produce a resolvent if at least one of the parent clauses is a unit, 
i.e. contains only a single literal. This resolution restriction has the advan- 
tage that the size of the produced resolvents decreases as compared with 
the parent clauses. Hence, unit resolution is working towards producing the 
empty clause which has size 0. The incompleteness of unit resolution can 
be seen by the same counter example as for input resolution, and this is not 
mere accident: It can be shown that a clause set has an input resolution 
refutation if and only if it has a unit resolution refutation (cf. Exercise 91). 

We finally proceed to the SLD-resolution (SLD = linear resolution with 
selection function for definite clauses). This restriction is only defined for 
Horn clauses. This resolution restriction plays an important role in logic 
programming which will be discussed in more depth in the next chapter. 
SLD-resolutions are both input and linear resolutions which have a special 
form. The base clause must be a negative clause (a so-called goal clause), 
and in each resolution step, the side clause must be a non-negative input 
clause. (A non-negative Horn clause is also named a definite clause or a 
program clause). 

For example, let F = {C1, C2,.. . ,Cn, NI , . . . ,Nm}  be a set of Horn 
clauses where C1, C2 , . . . ,  Ca are the definite clauses and N 1 , . . . , N , ,  are 
the goal clauses. An SLD-resolution of the empty clause must then have the 
form, for a suitable j E { 1 , . . . ,  m} and for a suitable sequence il, i 2 , . . . ,  il E 
{ 1 , . . . , n } .  
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C~j. 
Ci2 �9 

e l !  �9 

[3 

The clauses represented by dots, i.e. the "intermediate results", can only be 
negative clauses, because they result from resolution of a negative and a def- 
inite Horn clause. That  means, SLD-resolutions are always N-resolutions. 
Furthermore, SLD-resolutions are set-of-support resolutions where the set- 
of-support is { N 1 , . . . , g m }  (cf. Exercise 39). W e  will show that  SLD- 
resolution is complete for Horn clauses. 

R e m a r k :  In the abbreviation SLD (linear resolution with selection func- 
tion for definite clauses), the additional aspect of a selection function is 
mentioned. In our present definition, we ignore this aspect of selection, 
but come back to this point in the investigations of Section 3.3. There, 
the presence of a selection function (which selects the next definite clause 
to be resolved with) is treated as combination of SLD-resolution with a 
special strategy (see the discussion at the beginning of this section). Here, 
we treat SLD-resolution as identical with LUSH-resolution (LUSH = linear 
resolution with unrestricted selection for Horn clauses). 

All of the completeness proofs for these resolution restrictions are shown 
for the propositional case first, that  is, for the ground instances of the pred- 
icate logic clauses. Just as in the proof of the general resolution theorem 
of the last section, the Lifting Lemma is used to convert resolution refuta- 
tions for ground instances to resolution refutations for the original clauses 
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in predicate logic. We have to check that the Lifting Lemma does not 
change the structure of a resolution proof. It is easily seen that a P-, N- 
etc. resolution is still a P-, N- etc. resolution after application of the Lifting 
Lemma. To prove completeness of a resolution restriction, we have to mod- 
ify the proof of the resolution theorem in propositional logic (see Section 
1.5) according to the respective restriction. 

As preparation for the following proofs, we introduce the following no- 
tation. For a (propositional logic) clause set F and a literal L occurring 
in F,  we let FL=O be the clause set which is obtained from F by canceling 
every occurrence of L within the clauses of F,  and for every occurrence 
of L in a clause in F, the whole clause is eliminated from F. Similarly, 
FL=I is defined by interchanging the roles of L and L. In other words, 
FL=a, a E {0, 1}, is obtained from F by fixing the assignment .A(L) - a 
and performing obvious simplifications. From this, it is clear, that  the 
unsatisfiability of F implies the unsatisfiability of FL=O and of FL=I. 

T h e o r e m  

The P-restriction of resolution is complete. 

Proof." As observed above, it suffices to prove the theorem for propositional 
logic. Let F be an unsatisfiable set of clauses. By the compactness theorem, 
we can assume that F is finite. We show by induction on the number of 
different atomic formulas occurring in F, that the empty clause is deductible 
from F by P-resolution. 

If n - 0, then F - {D}, and there is nothing to prove. 

Now let n > 0 and assume that F contains n atomic formulas. Pick any 
one of those, say A. Then both clause sets Fa=o and FA=I are unsatisfi- 
able and contain at most n -  1 atomic formulas. By induction hypothesis, 
there are resolution refutations for FA=O and for FA=I satisfying the P- 
restriction. Now we insert the literal A in all those clauses in FA=O again, 
where it was canceled before, and also in all the respective resolvents. The 
above resolution of the empty clause from FA=o then turns into a resolu- 
tion of {A} from F. This is still a P-resolution since A is a positive literal. 
Next, we add resolution steps which resolve the so-obtained clause {A} 
with every clause in F which contains -~A. These resolution steps are also 
P-resolutions. Now we have all clauses from FA=I available. Therefore, 
we attach the P-resolution refutation building upon FA=I, which exists by 
induction hypothesis, and obtain altogether a P-resolution refutation of F. 
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T h e o r e m  

The N-restriction of resolution is complete. 

P r o o f :  Swap in the above proof all occurences of "positive" by "negative", 
of A by --,A, of FA=O by FA=I (and vice versa). �9 

T h e o r e m  

Linear resolution is complete. (More precisely: For every unsatisfiable 
clause set F there is a clause C E F such that  the empty clause is lin- 

early resolvable from F,  based on C). 

P r o o f :  Let F be unsatisfiable. By the compactness theorem, we can as- 
sume tha t  F is finite. Let F ~ be a minimally unsatisfiable subset of F (i.e. 
F ~ is an unsatisfiable subset of F,  and every proper subset of F ~ is satisfi- 
able. F ~ can be constructed from F by successively canceling clauses from 
F until any further canceling of a clause causes satisfiability of the resulting 
clause set). 

Now we show that  every clause in F ~ can be used as base clause to allow 
a linear resolution refutation. The proof is by induction on the number  n 
of atomic formulas occurring in F ~. Let C be an arbitrary clause in F ~. If 
n - 0, then F ~ - {[3} and C - rq. There is nothing to show. 

Now we come to the induction step. If F ~ contains n > 0 atomic for- 
mulas, then we consider two cases. 

Case 1" I C ] -  1. 

In this case, C - {L) for some literal L. Then the clause set F~= 1 is 
unsatisfiable and contains at most n -  1 different atomic formulas. Let 
F It be a minimally unsatisfiable subset of F~= 1. Then we claim that  F "  
must  contain a clause C ~ such that  C~12 {L) E F ~. Tha t  means, C ~ was 
obtained from a clause in F by canceling L. Such a clause C ~ must exist 
in F "  because otherwise F "  would be a subset of F ~ - {C}, and therefore 
would be satisfiable (because F "  was chosen minimally unsatisfiable). By 
the induction hypothesis,  there is a linear resolution of the empty clause 

from F " ,  based on C ~. From this linear resolution proof we construct the 

desired linear resolution of the empty clause from F ~, based on C - {L}, as 
follows. The first resolution step resolves the base clause C - {L} with C~t.J 
{L}. Therefore,  the resolvent is C ~. Then we attach the above resolution 
refutation,  but take the original clauses from F instead, i.e. possibly with 
the literal L which was canceled in F ~. The literal L also appears in the 
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respective resolvents, and instead of deducing the empty clause, we obtain 
{L} at the end of the linear chain. A final resolution step resolving {L} 
with the base clause C -  {L} gives the empty clause. 

Case 2: IC] > 1. 

In this case, we choose an arbitrary literal L E C and let C ' -  C -  {L}. 
Then, F~= 0 is unsatisfiable and C' is a clause in F~;=0. We claim that F~;=0 
is satisfiable. To see this, let ,4 be a model for F ' -  {C}. Then, .A(C) - 0, 
because A(F ' )  - 0, by unsatisfiability of F' .  Therefore, .A(L) - 0, because 
L E C. From this, we obtain A(F~;=0 - {C}) - 1. 

Now let F"  be a minimally unsatisfiable subset of F~;=0. As we have 
just seen, F"  must contain C' (because canceling C' from F"  would cause 
satisfiability). We can apply the induction hypothesis on F".  Therefore 
there exists a linear resolution of the empty clause from F",  based on C ~. 
In this resolution proof, we add the literal L at every place where it was 
canceled before (also in the respective resolvents). Then we obtain a linear 
resolution of {L} from F' ,  based on C. 

Now we observe that ( E ' -  {C})U {{L}} is unsatisfiable and F ~ -  {C} 
is satisfiable. Using Case 1, there exists a linear resolution of the empty 
clause from (F '  - {C}) U {{L} }, based on {L}. Attaching this resolution 
proof behind the above constructed resolution which yields {L}, we obtain 
the desired resolution of the empty clause from F' ,  based on C. �9 

Exerc i se  87: Let F be the unsatisfiable clause set built up from the atomic 
formulas A x , . . . ,  An such that F contains all m = 2 n clauses of the form 
{ B 1 , B 2 , . . . , B , }  with Bi E {Ai,- ,Ai}.  The usual resolution refutation (in 
form of a complete binary tree) has m -  1 resolution steps. Find recursions 
for the number of resolution steps constructed by the induction proofs for 
completeness of linear and of P-resolution. Compare this number with 
m - 1 .  

T h e o r e m  

The set-of-support restriction of resolution is complete. 

Proof." This follows from the completeness of linear resolution. Let F be 
an unsatisfiable clause set, and let T C_ F be a set-of-support, i.e., F - T 
is satisfiable. A minimally unsatisfiable subset of F has to contain at least 
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one clause C E T, because F -  T is satisfiable. Using the previous proof, it 
follows that there is a linear resolution of the empty clause from F, based 
on C. This is also a set-of-support resolution with set-of-support {C}, and 
therefore also with set-of-support T. �9 

Exerc i se  88: Show that by combining two complete resolution restrictions, 
in general, one loses completeness. Give an example of an unsatisfiable 
clause set and two complete resolution restrictions (e.g. P-resolution and 
N-resolution) such that the empty clause cannot be derived by satisfying 
bo~h restrictions. 

Now we turn to the resolution restrictions which are incomplete in the gen- 
eral case. Here we obtain immediately the following theorem (cf. Exercise 
35). 

T h e o r e m  

Unit resolution is complete for the class of Horn clauses. 

Proof." Since P-resolution is complete in the general case, it is also complete 
for the special case of Horn clauses. But positive Horn clauses must be units 
(i.e. consist of a single literal). Therefore, it immediately follows that unit 
resolution is complete for Horn clauses. �9 

T h e o r e m  

SLD-resolution is complete for the class of Horn clauses. 

P roo f :  Let F be an unsatisfiable set of Horn clauses. Such a set must 
contain a negative clause (otherwise let .A(A) = 1 for every atomic formula 
A in F,  then A would be a model for F).  Furthermore, if F '  is a minimally 
unsatisfiable subset of F,  then there must be a negative clause C in F ' .  By 
completeness of linear resolution, there is a resolution of the empty clause 
from F '  (hence from F),  based on C. This linear resolution chain must 
have the form of an SLD-resolution. First, it is based on a goal clause, 
namely C. Further, all resolvents must be negative clauses, therefore the 
side clauses can only come from F,  and must be definite clauses. �9 
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E x e r c i s e  89: Prove the completeness of SLD-resolution for the class of 
Horn clauses directly, i.e. without referring to the completeness of linear 
resolution. 

Hint: Imagine the process of the marking algorithm for Horn clauses 
discussed in Section 1.3. and "simulate" it backwards in terms of SLD- 
resolution steps. Another possibility is to use (a generalization of) Exer- 
cise 38. 

T h e o r e m  

Input resolution is complete for the class of Horn clauses. 

P roof :  SLD-resolutions are also input resolutions. 

E x e r c i s e  90: Show that the completeness of input resolution follows just 
as easily from the completeness of N-resolution. �9 

E x e r c i s e  91" Show that for every clause set F, F has an input resolution 
refutation if and only if F has a unit resolution refutation. 

E x e r c i s e  92: Show that resolution remains complete if no resolution step 
is allowed where one of the parent clauses is a tautology. A clause is a 
tautology if and only if it contains an atomic formula together with the 
complement of this atomic formula. 

E x e r c i s e  93: If, in a resolution step, only one literal in each parent clause 
is used for unification, then we call this binary resolution. (In other words, 
in the definition of a resolvent in predicate logic, m = n = 1). 

Show by a counter example that binary resolution in general is incom- 
plete. Show further that binary resolution is complete for Horn clauses. 
Furthermore, for Horn clauses it remains complete if combined with any of 
the other complete resolution restrictions for Horn clauses. 
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(Actually, it is this combination of binary resolution and SLD-resolution 
which plays a special role in the next chapter). 

R e m a r k :  We have made an effort to use the possibilities which the semi- 
decidability of predicate logic offers; that is, the possibility of obtaining 
automated theorem proving procedures. But practical experience with such 
procedures (which might involve trickier techniques than those we discuss 
here) shows that they are not yet able to prove complicated theorems - o r  
to substitute for mathematicians. 

It might be the case that the approach is too general. If 

M = {F1,F2,...,F,~} 

is an arbitrary set of axioms, and if it has to be tested whether the formula 
G is a theorem of the theory Cons(M), in principle, resolution can do the 
job. One has to test whether {F1 , / ' 2 , . . . ,  Fn,'-,G} is unsatisfiable. Very 
often, the interest is concentrated on very special theories, so that M is 
fixed, and only G varies. 

In this case, it might be better to develop calculi which are directly 
tailored for the particular theory (but only applicable for that theory). Such 
a calculus, in a sense, incorporates more knowledge about the particular 
theory than the pure resolution calculus. 



Chapter  3 

L O G I C  
P R O G R A M M I N G  

3.1 A n s w e r  G e n e r a t i o n  

In this section we show that  the execution of a program can be understood 
as the automated deduction of the empty clause from a given unsatisfiable 
clause set (possibly using the resolution refinements from Section 2.6). A 
further concept is needed: how to generate an answer, a result of the com- 
putat ion,  from the resolution proof. A resolution proof as such shows only 
that  the empty clause is derivable; an answer, in a sense, explains how it 
is obtained. The following ideas of extracting an answer from a resolution 
proof have their roots in the works of Green and Kowalski. 

Suppose a satisfiable set of clauses F is given. We can interpret F as 
a (logic) program: In F certain predicates and function symbols occur; 
and by the clauses in F,  certain assertions about  the relationships of the 
predicate and function symbols are made. In a sense, the general context 
of the problem to be solved is specified. 

Let us consider the following simple example (here we use for better  
understanding more intuitive names for the occuring symbols than P,  f ,  
and a, etc.). 

F __ { {likes(Eve, Apples)}, 
{ likes(Eve, Wine) }, 
{ likes(Adam, x),-~likes(x, Wine)} } 

109 
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Here, likes is a binary predicate symbol, and Eve, Apples, Wine, Adam are 
constants. This clause set F can be interpreted as 

"Eve likes apples" 
"Eve likes wine" 
"Adam likes everybody who likes wine" 

This can be thought of as a specification of the general problem context (in 
this case, not a very profound one). A call of this logic program might be 
given by the formula 

G -- 3y likes(Adam, y). 

This can be interpreted as the question: "Is there anybody whom Adam 
likes?", and fu r the rmore -  this is the aspect of answer gene ra t ion -  "Who 
is this?" 

It is typical for such a formula as G which serves as the program call (or 
query) to contain an existential quantifier. We expect to receive from the 
system (the logic program evaluator) not only the answer yes or no, but in 
case of yes we additionally expect the presentation of such an object (or all 
such objects) whose existence is claimed. 

In the terminology of the excursion in Section 2.3, the logic program 
F can be thought of as being an axiom system for some theory Cons(F) 
(here the "theory of Adam and Eve"), and the question G to be answered 
corresponds to the question whether G is a theorem of Cons(F). In other 
words, we want to know whether G is a consequence of F .  We can verify 
this using resolution by checking whether there is a resolution refutation of 
F A ~G. We have 

F A -,G - { { tikes( Ev , Appt  )}, 
{ }, 
(likes(Adam, x), ~likes(z, Wine)}, 
{- tik  (Adam, y)} }. 

A derivation of the empty clause from this clause set is given by the 
following diagram. 
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{~likes( ~ 

{-~likes(~ 

idam, y)} { ~ A d a m ,  x), -~likes(x, Wine)} 

/ / / , . b  = [./,] 
,, wi~) } { t ~ E ~ ,  win~) } 

Indeed, the empty clause is derivable. Therefore, the clause set is unsat- 
isfiable. This means that  G is a consequence of F .  Therefore, there is 
somebody whom Adam likes. But who? This can be seen from the substi- 
tutions which are performed on the variable in the query clause, namely y. 
The variable y is subst i tuted by Eve in the second resolution step. Therefore 

the answer is Eve. 

A possibility to make this substi tution process t ransparent  is to intro- 
duce an answer predicate. Instead of the clause {-~likes(Adam, y)} tha t  
stems from the query formula G, we now use 

{-~likes( Adam, y), ANSWER(y) }. 

Now our aim is not to derive the empty clause, but to derive a clause that  
consists of (one or more) answer predicates only. In our example, we get: 

{-~likes(Adam, ~ I, ANSWER(y)} { likses(Adam , x), -~likes(x, Wine)} 
I 

{~likes(y, Wine 

{ A NS W~ 

I / 
I 
ANSWER(y)} {likes(Eve, Wine)} 

Another  example with a more complex answer is the following. 

{ {likes(Eve, Apples)}, 
{likes(Eve, Wine), likes(Lucy, Wine)), 
{ t~k~(Adam, ~), -~t~k~(~, W~n~)), 
{-~likes(Adam, y), ANSWER(y)) } 

An interpretat ion of this clause set is 
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"Eve likes apples" 
"Eve or Lucy (or both) like wine" 
"Adam likes everyone who likes wine" 

and the query clause containing the answer predicate can be interpreted as 

"Who does Adam like?" 

An answer generation using resolution looks like this: 

{-~Z~k~(Ad~m, y), AIVSWEn(y)} {t~k~,(Ad~m, ~),-~t~k~,(~, W~)} 

~, Wi~), lik~,(L~y, Wi~)} 

{ANS En(E~), ANSWER(L~y)} 

This means that  Adam likes Eve or Lucy (or both). Notice that  the reso- 
lution proofs can always be so arranged that  they are linear resolutions, as 
above, with the query clause as base clause (cf. Section 2.6). 

This more complicated situation that  the answer consists of an or of two 
possibilities was enforced by the situation that  the logic program contained 
the clause {likes(Eve, Wine), likes(Lucy, Wine)}. In general, this situation 
is possible whenever the logic program contains a clause with more than 
one positive literal, i.e., a clause that  does not have the Horn form. 

Another possibility for this to happen is when the query formula, after 
transforming it to clausal form, splits in more than one clause. Each of 
these clauses then contains the answer predicate. This is one of the reasons 
that  PROLOG insists of using only Horn clauses, and only one query clause. 
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We will discuss in the next sections how the answer generation process 
for the special case of Horn clauses can be designed, using the resolution re- 
strictions from Section 2.6 and further special evaluation strategies tailored 
for these restrictions. 

Consider the query clause 

{-~likes( Eve, z ) , A NS WER( z) } 

which is in words, 

"Is there anybody or anything that Eve likes, and if so, output 
such an object z". 

Here we obtain two possible deductions of the empty clause (or the pure 
answer clause) and therefore two possible answers. 

{~likes(Eve, z ) ,AgSWER(z ) }  {likes(Eve, Apples)} 

{ ANS WER(A pples) } 

and 

{-~likes(Eve, z ) ,ANSWER(z)}  {likes(Eve, Wine)} 

{ANSWER( Wine)} 

This means that  z -- Apples and z = Wine are both possible answers. In 
this case, the and-combination of two answers is expressed by the situation 
that  there are two possible resolution proofs. 

E x e r c i s e  94: Modify the above example so that  exactly one of Eve and 
Lucy likes wine. Then apply again the answer generation process. 

R e m a r k :  Consider a set of clauses F (which can now also be called logic 
program) and let P be a predicate symbol occurring in F (e.g. likes in the 
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above example). For simplicity, suppose P is binary. Then, a typical query 
formula has the form 

G = 3z P(t, z) 

for some variable-free term t (for example, t = A dam). This formula G leads 
to the query clause {-~P(t,z)} or {-~P(t,z),ANSWER(z)}. This situation 
can be thought of as if t is the actual input parameter and z is the output 
parameter. After evaluation of the logic program F with the query clause 
we expect the result of the computation to be substituted for the variable 
z. Our formalism permits an input parameter transfer and an output pa- 
rameter transfer. Both are accomplished by the substitutions done by the 
unification algorithm (as a "subroutine" of the resolution algorithm). More 
precisely, the input parameter transfer is achieved by the substitutions for 
the variable(s) in the logic program F, and the output parameter transfer 
by the substitutions for the variables occurring in the query clause (i.e. in 
the answer predicate). 

Notice that  the same logic program F can be used with different query 
clauses, for example 

{-~P(z', t'), ANSWER(z')}. 

Here the roles of input and output parameter are interchanged. Now the 
question is not what Eve likes (apples and wine), but who likes Eve (Adam). 
We say, the parameter passing process is invertible. 

The next example is the monkey-and-banana problem. Here the function 
symbols are used as operators on a certain state space which characterizes 
the relative situation of the monkey, the chair, and the bananas. The 
aim of the computation is to find a series of applications of the available 
"operators" to transform a starting state into a desired end state (where 
the monkey has reached the bananas). Consider the following clauses 

(1) {P(a,b,c,d)} 

Interpretation: "In the start situation d the monkey is in posi- 
tion a, the banana is hanging above position b, and the chair is 
at position c." (Here a, b, c, d are constants). 

(2) {--,P(x,y,z,s),P(w,y,z, walk(x,w,s))} 

"If, in some situation s, the monkey is in position x, then an 
application of the function walk(x, w,s) has the effect that  the 
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monkey is afterwards in position w. In other words, the mon- 
key is able to walk to any position." (Here, ~, y,z,  s, w are 
variables). 

(3) {-~P(x, y, x, s), P(w, y, w, push(x, w, s))} 

"If the monkey is at the same position as the chair, namely x, 
then he can push it to any position w." 

(4) {-~P(x, y, x, s), P(x, y, x, climb(s))} 

"If the monkey is at the chair, then he can climb the chair." 

(5) {~P(x,  x, x, climb(s)), Reach(grasp(climb(s)))} 

"If the monkey has climbed the chair, and if the position of 
monkey, chair, and banana coincide, then the monkey can reach 
the banana by grasping it." 

The clauses describe the problem context and are considered as the logic 
program. Now consider the question 

3z Reach(z), 

which means in words: "Is there a situation in which the monkey has 
reached the b a n a n a -  and how to achieve it?" Again, we negate the question 
and transform it into clause representation, including the answer predicate, 
and obtain 

(6) {-~Reach(z), ANSWER(z)} .  

A resolution proof of the pure answer answer clause is given by the following 
sequence C 1 , . . . ,  C5 with 

Cx = {'~P(x, ~, x, climb(s)), ANSWER(grasp(climb(s)))} 

(resolvent of (5) and (6)) 

C2 - {~P(x,  x, x,s) ,  ANSWER(grasp(climb(s)))} 

(resolvent of (4) and Cx) 

C3 - {-~P(x, y, x, s), ANSWER(grasp(climb(push(x, y, s))))} 

(~o1~r of (3) ~ d  c~) 
c~ = {-~p(~, y, z, ~), AYSWER(g~p(~l imb(p~h(~,  y, ~ lk (~ ,  z, ~)))))} 

(resolvent of (2) and C3) 

c~ = { A g s w z R ( g ~ a ~ p ( d ~ b ( p ~ h ( ~ ,  b, ~Zk(a, ~, d)))))} 
( r ~ o l ~ t  of (1) ~ d  C~) 
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Interpretation of the answer: "Starting from the situation d, walk from a 
to c, push the chair from c to b, climb the chair, and grasp the banana." 

E x e r c i s e  95: Six coins are lying on the table in the following order 

head head head tail tail tail 

In one move, two adjacent coins may be turned. We search for a sequence 
of moves which transfers the coins into the situation 

tail head tail head tail head 

Formulate a logic program to solve this puzzle. 

E x e r c i s e  96: Three young women with their three jealous boy friends 
want to drive to the beach. They have a sports roadster available with two 
seats. How can they arrange the drives to the beach so that  at no moment a 
woman is together with another man - except her own boy friend is present? 

E x e r c i s e  97: Formulate the following puzzle in predicate logic clauses, 
and use the answer generation method to solve it: 

Tom, Mike, and John are members of the alpine club. Each member of 
the alpine club is either skier or climber or both. No climber likes the rain 
and all skiers like the snow. Mike likes everything that  Tom dislikes, and 
vice versa. Mike and John like the snow. 

Is there a member of the alpine club who is climber but no skier, and 
who is this? 

E x e r c i s e  98: Consider again the theorem proving example on group the- 
ory from Section 2.5. Use the answer generation method to find out subse- 
quently how the right inverses have to be chosen. 
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3.2 Horn Clause Programs 

In the following, we consider logic programs (sets of clauses) that are re- 
stricted to the Horn form. There exists a well established theory for logic 
programs of this form. The programming language PROLOG is based on 
Horn clauses. There are several reasons for this restriction to Horn form. 

First, most of the mathematical theories seem to be axiomatizable in 
terms of Horn formulas (provided they are axiomatizable at all). Many 
examples in this book (e.g. the monkey-and-banana problem) turn out to 
be in Horn form. Therefore, imposing the Horn form restriction does not 
seem to be a real restriction in practice. 

Second, allowing clauses that are not Horn leads to more complicated 
answer situations. We have discussed this in terms of some examples in the 
last section. This is one of the reasons why there is no developed theory 
of answer generation (or, logic programming) for the general case. (Notice, 
we did not prove any theorems about correctness or completeness of the 
answer generation process in the last section). 

The third reason is efficiency. In the propositional logic case, we have 
seen there are efficient algorithms for testing satisfiability of Horn formulas 
(Section 1.3 and Exercise 35), in contrast to the exponential algorithms 
in the general case. Certain aspects of efficiency are still present when 
we consider the case of Horn formulas in predicate logic. (Although, the 
undecidability result from Section 2.3 is still valid, even for the special case 
of Horn formulas). 

In particular, it is the completeness of SLD-resolution for Horn clauses 
that is attractive here since SLD-resolution proofs have the nature of a 
sequential computation. In a sense, the input of such an SLD-computation 
is the base clause (the query clause), and the computation is successful 
and leads to a result if the empty clause is derivable. In view of this 
computational (or procedural) interpretation of SLD-resolution proofs, we 
distinguish between the following types of Horn clauses. 

Clauses that consist of a single positive literal are called fac~s in the 
following. Such a clause can be interpreted as the claim of a simple positive 
statement. 

Procedure clauses have the form {P,-~Q1,. . . ,-~Qk} where P, Q1, . . . ,Qk 
are certain atomic formulas of predicate logic. The notation in PROLOG, 
namely 

P : - Q 1 , Q 2 , . . . , Q k .  

shows the character of an implication (cf. Exercise 3). The symbol : -  
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stands for an implication sign pointing to the left. Here, P is called the 
procedure head, and the sequence Q 1 , . . . ,  Qk is called the procedure body. 
A single Qi is considered as a procedure call. 

The intended meaning here is that to satisfy the procedure body P, it 
suffices to perform the procedure calls Q 1 , . . . ,  Qk successfully. We will see 
later that  this conception is closely related with an SLD-resolution refuta- 
tion. 

Notice that  facts can be considered to be special cases of procedure 
clauses (with k = 0, i.e. there is no procedure body). 

A Horn clause program (or in the following simply logic program) con- 
sists of a finite set of facts and procedure calls. An element of a logic 
program is also called program clause or definite clause. 

Finally, a logic program is called or activated by a goal clause. A goal 
clause (also called query clause) is a Horn clause too, but one containing 
negative literals only. Such a clause has the form {~Q1,-~Q2,. . . , -~Qk }, or 
in the PROLOG notation, 

? -  Q 1 , Q 2 , . . . , Q k .  

Referring again to the intuitive interpretation mentioned above, this nota- 
tion suggests that  a goal clause is a sequence of procedure calls which is to 
be satisfied successfully. 

In this context the empty clause [] is called the halting clause. It can 
be considered to be the special case of a goal clause (with k = 0) where all 
procedure calls are successfully performed. 

In each resolution step, it is required that the variables of the two parent 
clauses are being renamed so that they are disjoint (these are the substitu- 
tions Sl and s2 in the definition of resolution, cf. Section 2.5). Obviously, 
it suffices to rename the variables in only one of the parent clauses (i.e. 
set Sl=[ ]). In the following SLD-resolution refutations we assume that  
renamings are performed for the program clauses only (which are the side 
clauses in the terminology of SLD-resolution, cf. Section 2.6), not in the 
goal clauses. We call this a standardized SLD-resolution. 

E x a m p l e :  Consider the following recursive definition of the addition (let- 
ting y' denote the successor of y)" 

x + O  = x 
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�9 + r  ( . + y ) '  

Formulated in predicate logical clauses, we obtain: 

(1) 
(2) 

{A(x,O,x)} 

{A(x, s(y), s (z) ) , -A(x,  y, z)} 

Here A(z, y, z) means that z + y -  z, and s represents the successor func- 
tion. The clauses (1) and (2) constitute the logic program. A possible goal 
clause could be 

{-~A(~(~(~(0))), ~(~(0)), ~)}, 
in words: "Compute 3 + 2, and deliver the result in the variable u ' .  A 
standardized SLD-resolution proof is given by the following diagram (here, 
z' is a new variable, obtained by renaming). 

{-A(~(~(~(0))), ~(~(0)), ~)} 
L /~ , .b ,  (2) 

= [= / , ( , ( , (o) ) ) ]  [y/,(o)] [~,/,,(~)] 

{-~A(.(~(~(0))), .(0), z)} 

[//~ / ( 2 /  
�9 . b 2  = [ = / , ( , ( , ( o ) ) ) ] [ W o ] k / . ( ~ ' ) ]  

{-~A(.(.(.(0))), 0, ~')} 

I / (1) 
,,.,b3 = [ = / ~ ( , ( , ( o ) ) ) ] [ ~ ' / , ( , ( , ( o ) ) ) ]  

[3 

An answer, a result of the computation, can be obtained by applying the 
computed most general unifiers sub1, sub2, sub3 to the original goal clause. 
We obtain 

{~A(s(s(s(O))), s(s(O)), u}sublsub2suba = 
{-~A(~(~(~(0))), ~(~(0)), ~(~(~(~(~(0))))))}. 
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To make it clearer what the result of the computation is, we can apply the 
substitution sublsub2sub3 directly to the variable u occurring in the goal 
clause. 

usubxsub2sub3 - s(z)sub2sub3 

= s(s(z'))sub3 

= 

In other words, the result is 5. This method of obtaining a result of the 
computation by applying the most general unifiers to the variable(s) in the 
goal clause is essentially identical with the method of introducing an an- 
swer predicate as discussed in the last section. In this example we can see 
that  logic programs (in the pure form as described here) can only perform 
symbol manipulations, not arithmetical computations, as in standard pro- 
gramming languages. (We have obtained "s(s(s(s(s(0)))))" as result, not 
"5"). A concrete logic programming language (like PROLOG) should ad- 
ditionally support the possibility of evaluating arithmetical expressions (see 
the discussion about the is predicate in Section 3.4). At the moment we 
will not consider such non-logical aspects of a logic programming language. 

E x e r c i s e  99: The logic program for addition described above can also be 
used for subtraction. How? 

E x e r c i s e  100: Add to the addition program further clauses which allow 
one to compute the Fibonacci function. This is the function fib with 

f i b ( O ) -  1 

f i b ( l ) -  1 

fib(n) - f i b ( n - 1 )  + f i b ( n - 2 )  for n > 2. 

E x e r c i s e  101: Formulate a different logic program for addition which is 
based on the following recursive presentation" 

x + O  - x 

x + y '  - x~+y .  



3.2. H O R N  C L A U S E  P R O G R A M S  121 

Compute again what the result of 3 + 2 is. 

E x e r c i s e  102: Ackermann's function is defined by the following equations. 

a(O,y) -- y +  l 
a(x, O) -- a(x -- l, 1) 
a(x, y) -- a(x -- l, a(x, y - 1 ) )  

f o r x  > 0  
for x ,y  > 0. 

For example, we have 

a(1, 2) - a(0, a(1, 1)) - a(O,a(O,a(1, O))) 

- a(0, a(0, a(0, 1))) - a(0, a(0, 2)) - a(0, 3) 

- 4, 

whereas a(4, 2) has more than 19000 decimal digits! Prove that  this equa- 
tional presentation of the function a is well defined, that  is, each evaluation 
of a(m, n) for m, n E IN ends in finitely many steps. Formulate a logic 
program to compute Ackermann's function! 

The concepts introduced so far in terms of several examples will now be 
made more formal. Our aim is to define a rigorous formal semantics of 
such logic programs. In the following definition the "procedural" aspect of 
a logic program computat ion is emphasized. 

D e f i n i t i o n  (procedural interpretation of Horn clause programs) 

The procedural interpretation of Horn clause programs is given by the pre- 
sentation of an abstract  interpreter for such programs. A configuration of 
this interpreter is any pair (G, sub) where G is a goal clause and sub is a 
substitution. 

Let F be a logic program (set of definite Horn clauses). The transition 
relation for configurations is then defined as follows. 

if and only if G1 has the form 

G1 - {-~A1, ~ A 2 ,  �9 � 9  -~Ak } (k _> I) 
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and there is a program clause 

C = {B, ~C,, -~C2,..., ~C, } (~ > 0) 

in F (after its variables have been renamed so that  G,  and C do not have 
a variable in common) such that  B and Ai for some i E { 1 , . . . , k }  are 
unifiable. Let a most general unifier be the subst i tut ion s. Then G2 has 
the form 

G2 = { - ~ A , ,  �9 � 9  - ~ A i -  1, - ~ C , , . . . ,  - ~ C , ,  ~ A i + , ,  �9 � 9  -~Ak } s  

and sub2 has the form 

sub2 - subx s. 

A computation of F on input G = {-~A,,. �9 -~Ak } is a (finite or infinite) 
sequence of the form 

(G,[])~"F ( G * , s u b * ) ~ ( G ~ ' s u b 2 ) l  F "'" 

If the sequence is finite, and the last configuration of it has the form ([9, sub), 
then this computat ion is called successful, and in this case the formula 
(A, A . . .  A Ak)sub is called the result of the computat ion.  

It can be seen tha t  a successful computa t ion  (restricted to the first compo- 
nent of the configurations) is simply a SLD-resolution refutation of F U  {G} 
where G is the base clause. Additionally, in the second component  of a con- 
figuration, we keep track of the sequence of most general unifiers tha t  have 
been used so f a r -  similar to the answer predicate method in Section 3.1. 

Notice that  computat ions of Horn clause programs are nondeterministic, 
that  is, each configuration can have more than one successor configuration. 
The possible computat ions from a given input G can be represented as a 
tree. 

(G3, suba) 

(G, , sub,) 

etc. 

(G, []) ~ F  (G2, sub2) ~ (Gs, subs) 

(G6, sub6) 
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Not considering configurations that are different because of renaming of 
variables, this tree has bounded degree, but it might contain infinite paths. 

Example :  Consider the following logic program 

F = {{P(x,z),---,Q(x,y),--,P(y,z)}, 
{P(u,u)},  
{Q(a,b)}} 

which in PROLOG notation is 

P(x, z) : -  q(x,  Y), P(Y, z). 
p(~,~). 
Q(a,b). 

The goal clause G - {--,P(v,b)} (resp. ? -  P(v,b)) as input leads to a 
non-successful computation 

({--,p(v,b)},[]) 
({~Q(~, y), ~P(y, b)}, [~/~][~/b]) 
({~P(b, b), }, [~/,][~/b][~/~][y/b]) 
({-~Q(b, y),--,P(y, b)}, [~l,,][~lb][,,la][ylb][~lb][~lb]) 

({-~Q(b, b)}, [zl,,][~lb][,,la][ylb][zlb][zlb][ylb]) 

which cannot be continued. Here the first, third, first, and second program 
clause have been used in the SLD-resolution steps. 

There are also two successful computations with different results. These 
are  

({--,P(v,b)},[]) 

({-~Q(v, y),---,P(y, b)}, [x/v][z/b]) 

({-~P(b, b)}, [x/vl[z/bl[v/a][y/b]) 

(n, [~lv][~lbl[vla][ylb][ulb]) 
and 

({~P(~, b)}, []) 

(o, [v/b]). 

(with the 1. 
program clause) 

(with the 3. 
program clause) 

(with the 2. 
program clause) 

(with the 2. 
program clause) 
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The first computation leads to the result 

P(v, b)[x/v][z/b][v/a][y/b][u/b] = P(a, b), 

and the second, 
P(v, b)[v/b] = P(b, b). 

E x e r c i s e  103" Describe all computations that are possible under the logic 
program 

P(a,b). 
P(x, y) :- P(y, x). 

with the given goal clause ? -  P(b, z). 

E x e r c i s e  104: Which type of program clause can be considered as a re- 
cursive procedure (in the sense of standard programming languages)? 

E x a m p l e :  Consider the following logic program that might be part of a 
larger program for symbolic differentiation. This time we use the PROLOG 
notation throughout. Here in this example, x and 1 denote constants, 
A,DA,B,DB,C denote variables, and diff is a binary predicate symbol, 
whereas sin, cos, +, �9 are function symbols. For better readability, we use 
infix notation for + and �9 (that is, we write x + y instead of +(x,  y)). 

diff (x,1). 
diff (A + B, DA + DB) :- diff (A, DA), diff (B, DB). 
diff(A �9 B ,A  �9 DB + B �9 DA) :- diff(A, DA), diff(B, DB). 
diff(sin(A), cos(A). DA) :- diff(A, DA). 

This logic program formalizes the fact that the derivative of x is 1. The 
second, third, and fourth clause formalize the sum rule, the product rule, 
and the chain rule (with respect to the sin function). 

Consider the goal clause 

7-  �9 c ) .  
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In words: determine the derivative of x,s in(x) .  The following computation 
is successful and yields the desired result z,,cos(x)+sin(x) (in the redundant 
form a~ �9 (cos(x) �9 1 ) +  s in(x) ,  1). 

Here we have 

Therefore, 

( ?-  d~ff(~ �9 ,~n(~), c ) ,  []) 

( ?- cliff(x, DA), diff(sin(x), DB), subl) 

(? -  diff(sin(x,), DB), sublsub2) 

( ?- diff(x, DA), Sublsub2sub3) 

([3, sublsub2sub3sub4) 

subx = [A/x][B/sin(z)][C/x, DB + sin(x) �9 DA] 

sub2 = IDA~l] 

sub3 = [A/x][DB/cos(x) , DA] 

sub4 = [DA/1] 

Csublsub2sub3sub4 - z �9 (cos(x) ,  1 ) +  s in(x) ,  1. 

E x e r c i s e  105: Write a logic program that  simplifies formulas by eliminat- 
ing useless multiplicative factors that are 1, and additive terms that  are 
0. (This program could be combined with the above program for differ- 
entiation.) The program we are looking for should be able to perform the 
following computation. Using as input the goal clause 

?- ~impzify(~ �9 A + (B + (0 + ~)) �9 ~, C). 

leads to the result 

simplify(1 �9 A + (B + (0 + z)) �9 1, A + (B + z)). 

E x e r c i s e  106: Prove the following variation of the Lifting L e m m a -  tai- 
lored for Horn clause computations: If 

(G~b' ,  [])~}T ""  i T (  D, ~b)  
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is a computation of the logic program F with the input Gsub ~, then there 
is another computation of F (of same length) on input G that has the form 

( o ,  . . .  

such that for some suitable substitution s, 

sub'sub = subHs. 

Using the results from Section 2.6, it is immediately clear that F tO {G} 
is unsatisfiable if and only if there exists a successful computation of F with 
input G. This follows from the completeness of SLD-resolution (see also 
Exercise 93), and involves the logical aspect of Horn clause computations. 
But regarding the result of the computation, up to this point we are not able 
to make a statement about the correctness of such computational results. 
Neither do we know what the possible range of computation results is that 
might occur at the endpoints of the nondeterministic computation paths. 

Such a statement is justified by the following theorem which can be 
understood as a strengthening of the correctness and completeness results 
for SLD-resolution obtained in sections 2.5 and 2.6. The theorem says that 
the obtainable computation results are as general as possible, that means 
they contain as many variables as possible. 

T h e o r e m  (Clark) 

Let F be a Horn clause program and let G = % A1, . . . ,  Ak be a goal clause. 

1. (correctness property) If there is a successful computation of F with 
input G, then every ground instance of the result (A1 A . . - A  Ak)sub 
is a consequence of F. 

2. (completeness property) If every ground instance of (A1A.. .AAk)sub'  
is a consequence of F, then there exists a successful computation of 
F with input G with the result (A1 A . . - A  Ak)sub such that for a 
suitable substitution s, 

(A1A. . .AAk)sub'  = (A1A. . .  AAk)subs. 
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Proof." 1. The proof is by induction on the length n of the computation. 

I n d u c t i o n  Base:  For n = 0 we have G = O and sub = [], and thus there 
is nothing to prove. 

I n d u c t i o n  Step:  Let n > 0 and consider a typical computation of length 
n, 

(G, [])tT (G1, ,~bi)~1-~---.. IT(o, ,~b~... ~b, ) .  

Here, s u b t , . . . ,  sub,, are the most general unifiers provided by the unifica- 
tion algorithm. Let the goal clauses G and G1 have the form: 

G - -  ? -  A i , . . . , A i - t ,  Ai ,  A i + t , . . . , A k  (k >_ 1) 

and 

G1 = ? -  ( A t , . . . , A i - i ,  C I , . . . ,  Cz, A i + t , . . . , A k ) s u b t .  

There must be a program clause in F of the form that was used for this 
first SLD-resolution step, 

B :- C1,.. . ,C, (Z > 0) 

such that  {B, A i )  is unifiable with some most general unifier subt .  Now 
consider the following computation of length n -  1: 

(G,, [))~Fr-"'" F ~  (o, ,~b~.. . ,~b,).  

By induction hypothesis, every ground instance of 

(At A . . .  A A i - 1  A C1 A . . .  A C! A Ai+i  A . . .  A Ak ) sub t  . . . sub,, 

is a consequence of F.  In particular, the subformula 

(C1 ^ . . - ^  C l ) s u b l . . .  sub,, 

is a consequence of F.  Since B : - C i , . . . ,  Ca is a program clause in F,  and 
by the observation that  

B s u b i  . . . s u b ,  = A i s u b i  . . . s u b , , ,  

it follows that every ground instance of A i s u b i . . .  sub,, is a consequence of 
F,  and hence also every ground instance of 

(Ai A ..  . A Ai  A . .  . A A k ) s u b i  . . . sub , ,  

is a consequence of F.  
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2. Let xl, . . . ,x ,~  be all the variables occurring in Gsub', and let a t , . . . , a m  
be new constants which did not appear yet. Define 

G' -- G s u b ' [ x i / a , ]  . . . [Xm/am]. 

By hypothesis, F U {G'} is unsatisfiable, and by the completeness of SLD- 
resolution (cf. Section 2.6, also Exercise 93), there is a successful computa- 
tion of F of the form 

(G',  [])I-F'F "'" F~'--( El, ,ubz...subn). 

Since G' does not contain any variables, G' - G 'subz . . .  sub,.  (That is, 
the substitutions in subz . . ,  subn concern variables in the program clauses 
only.) Now we substitute x z , . . . ,  zm for a l , . . . , a m  in this computation, 
and we obtain 

(Gsub', [])F~" "'" ~"F ( El, sub~...sub'n). 

Here, except for the above substitution, sub~, . . . ,  sub~n is identical with 
subz , . . . ,  subn. Therefore we have 

Gsub t , , t 
- Gsub sub1. . ,  sub..  

Using the Lifting Lemma (cf. Section 2.5 and Exercise 106), the above 
computation can be transformed into another computation of the same 
length, 

(G, [])I~--F "'" F]~'-'( O, sub~'.., sub~). 
Here sub, t , . . . ,  sub~ are most general unifiers provided by the Lifting Lemma. 
Then, for some suitable substitution s, 

l l l I I  I t  
� 9  - -  . . .  s u b  n 8 .  sub sub x sub, sub 1 

Therefore, letting s u b -  sub~. . . sub~,  we obtain 

(A~ ^ . . .  ^ A~)sub' = (A~ ^ . . .  ^ A~)subs, 

which completes the proof. 

Next, we want to clarify what the semantics of a logic program is. 
As in standard (operational) programming languages, there are different 
approaches. First we give the definition of an interpretative or procedural 
semantics. This approach focuses on the ides that a logic program is (or 
induces) a parallel and nondeterministic process. The semantics of a logic 
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program (together with a given goal clause as input) is the set of potential 
computational results of this process (with the given input). To simplify 
(and standardize) matters, we restrict ourself in the following to the ground 
instances of the computational results. 

Def in i t ion  (procedural semantics) 

Let F be a logic program and G a goal clause. The procedural semantics of 
(F, G) is defined by the set of ground instances of the computation results 
of F on input G which the abstract logic program interpreter can produce. 
This is symbolically, 

Sp~oc(F, G ) = {  H ] there is a successful computation of F on 
input G such that H is a ground instance of the 
computation result } 

Exerc i se  107: Show in detail what the procedural semantics of 

P(a,a). 
P(a,b). 
P(*, v) :- P(v, 

with the given goal clause 

?- P(:, z), P(z, 

is. 

A second, quite different approach to define a semantics of logic pro- 
grams starts out from the idea that the "meaning" (the denotation) of a 
logic program F - together with a given goal clause G = ? -  A1 , . . . ,  Ak is the 
set of ground instances of (A1A.-.AAk) which are consequences of F.  This 
model theoretic approach is similar to the assignment of a theory Cons(F) 
to a formula F (see Section 2.4). The theory Cons(F) associated with the 
axiom system F can be thought of being the model theoretic semantics of 
F.  
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In contrast to the above idea that  the logic program induces a dynamic 
process, we have here the idea of a static data base. The semantics of a logic 
program is declared as the set of formulas which is explicitly and implicitly 
represented by the program, namely everything which follows from it. 

D e f i n i t i o n  (model theoretic semantics) 

The model theoretic semantics of a logic program F and a given goal clause 
G = .7- A 1 , . . . , A k  is the set of ground instances of (At A- - -AAk)  that  are 
consequences of F.  In symbols, 

Stood(F, G) = { H  I H is a ground instance of (A1 A - . .  A Ak) 
and H is a consequence of F}.  

E x e r c i s e  108: Find out what the model theoretic semantics of the example 
in Exercise 107 is. 

The following theorem asserts that  procedural and model theoretic se- 
mantics are equivalent. This can be understood as a reformulation of 
Clark's Theorem. 

T h e o r e m  

For all Horn clause programs F and goal clauses G, 

,gp,. o~ ( F, G) = ,9,nod ( F, a ) . 

P r o o f i  (C) Let H E $v,oc(F, G). Then there is a successful computat ion 
of F of the form 

(G,[]) 

such that  H is a ground instance of (A1 A ".. A Ak)sub.  By Clark's The- 
orem (part 1), it follows that  H is a consequence of F .  Therefore, H E 

S od(F, G). 
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(2)  Let H E Stood(F, G). Then H is a ground instance of (A1A---AAk) 
and H is a consequence of F.  By Clark's Theorem (part 2), it follows that 
there is a computation of F of the form 

(a, ~  ub) 

such that H is an instance (in this case, a ground instance) of (A1 A - . .  A 
Ak )sub. Therefore, H E Sproc(F, G). 

Exerc i se  109: We can associate with each logic program F a function 
OpF that maps sets of atomic formulas into sets of atomic formulas. 

OpF(M)-  {A' I there exists a program clause C in F of 
the form {A,-~B1,. . . ,-~Bk}, k > 0 such that 
{A' , -~B~, . . . ,~B~} is a ground instance of C 
and B [ , . . . , B ~  is in M}. 

Let OP~ M and Op~F+I(M)- OpF(Op~(M)) for n _> 0. 

Prove that 

Fp - U op (o) 
n > 0  

is the least fix, point of the operator OpF (with respect to C). 

The fix.point semantics of F with given goal clause G -  ? -  A1 , . . . ,  Ak 
is defined as 

Sli~poi.t(F , G) = { H  I H is a ground instance of(A1A---AAk) 
and for all atomic formulas A in H, A E 
FpF}. 

Prove that Sfixpoint (F, G) -- Sproc (F, G). 

3.3 Evaluat ion Strategies  

Logic programs are nondeterministie, i.e. after each computation step there 
can be more than one possibility for continuing the computation. For 
every configuration (G, sub) there can exist finitely many configurations 
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(G1, subl), (G2, sub2),... ,  (Gk, subk) such that for i = 1 ,2 , . . . ,  k, (G, sub) 

Whenever nondeterministic programs have to be run on a real computer 
operating deterministically and sequentially, this nondeterminism has to 
be resolved in as efficient a way as possible. What is needed here is some 
evalualion slrategy which determines in which order the nondeterministic 
computation steps have to be performed. 

Looking more closely, it can be seen that the nondeterminism in logic 
programs occurs in two different forms: We distinguish in the following 
between type 1 nondeterminism and type 2 nondeterminism. 

Suppose, we have already selected a particular literal (i.e. a procedure 
call) in the goal clause which is to be unified with some procedure head of 
some program clause. If there are several such program clauses which can 
be used to produce resolvents, we call this type 1 nondetevminism. 

E x a m p l e :  Consider the goal clause ? -  A,B ,C .  Suppose B is selected 
as the next procedure call to be performed. Suppose the logic program 
contains the program clauses 

B : - D .  
B. 
B : - E , F .  

Then this situation results in three potential SLD-resolvents, that  is, in 
three new goal clauses: 

9.- A ,D,C.  
?- A,C. 
?- A ,E ,F ,C .  

From these three possible continuations of the computation, only one, if 
any, might be successful. Furthermore, even if there are several successful 
computations, they might lead to different results. This freedom in the 
choice of the next program clause constitutes the type 1 nondeterminism. 

If the goal clause consists of n literals (i.e. procedure calls), then each of 
these n literals can be used for unification in the next resolution step. This 
gives n! many ways of evaluating such a goal clause. This freedom in the 
choice of the literal in the goal clause constitutes the type 2 nondeterminism. 

Let us consider the above example. We describe the situation by a tree 
which expresses both types of nondeterminism. 
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. 7 - A ,  

? - A  

? A o * *  o ~  ~  

B , C  

, C  

,F,  C . . .  

actual  goal 

type 2 
nondeterminism 

selection of next 
procedure call 

type 1 
nondeterminism 

new goal clause 
after selection of 
a p rogram clause 

Next we show that the type 2 nondeterminism is not relevant and can 
be evaluated in any  order. Every evaluation strategy concerning type 2 
nondeterminism leads to the same computation results (so called "don't  
care" nondeterminism). That  is, one loses no generality by fixing some 
special evaluation strategy. E.g., at the branching points for the type 2 
nondeterminism one can follow the leftmost branch only and ignore the 
rest of the branches. 

To justify this, we first show in a lemma that the evaluation order of 
procedure calls is not relevant, and can be swapped without changing the 
computation result. 

Swapping Lemma 

Consider two successive SLD-resolution steps 

?-- AI,...,Ai,...,Aj,...,An 

~ ~.~  B : - C 1 , . . . , C k  

? -  ( A 1 , . . . ,  C , . . . , A j , . . . , A , ) s u b l  

~ i s ~  D : - E 1 , . . . , E I  

?-  (A1, . . . ,  C, . . . ,  E ,  . . . ,  A n ) s u b l s u b 2  

Here C stands for C1 , . . . ,  Ck and E stands for E l , . . . ,  El. Then the order 
of the resolution steps can be swapped: 
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?-- A t , . . . , A i , . . . , A j , . . . , A ,  

~ D : - E t , . . . , E l  

?- A,, . . . ,  E, . . . ,  

~ , , ~  B : - C t , . . . , C k  

?- C, . . . ,E , . . . ,  

Further,  subx sub2 is identical with sub~sub~ (except for possible renamings 
of variables). 

P r o o f :  First we have to show that  the SLD-resolution steps can be per- 
formed in swapped order. 

Observe that  Aisubtsub2 - Dsub2 - Dsubtsub2, since sub1 does not 
affect any variables in D. Therefore, A i and D are unifiable, and the first 
resolution step can be performed. Let sub~ be a most general unifier of A i 
and D. Since subtsub2 is a unifier of {Aj ,  D) ,  there is a subst i tut ion s such 
tha t  subt sub2 - sub, s. 

Further,  we have Bs  -- B s u b ~ s -  Bsubtsub2 - Aisubtsub2 - Aisub~s. 
(The first equality is true because sub~ does not affect any variables in B). 
Therefore, {B, Aisub~} is unifiable using s. Hence the second resolution 
step can be performed. Let sub 2 be a most general unifier. 

It remains to show that  sublsub2 and subtsub 2 '  ' are (essentially) identi- 
cal. We show that  there are substi tutions s' and s" such tha t  subt sub2 - 

Since sub~ is a most general unifier of {B, Aisub~}, and by the fact 
tha t  B s - Ai ' ' ' subis , there is a substi tut ion s' with s - sub2s.  Therefore, 
sub1 sub2 - sub, s - sub~ sub2s'. 

Next we observe that  Ai i i _ t t subtsub 2 Bsublsub2, and by the fact tha t  
subt is a most general unifier of {Ai, B} ,  there is a subst i tut ion so such tha t  
sub~sub~ - subtso. Now we have Ajsublso  - Ajsub~sub~ - Dsub'l sub'2 -- 
Dsublso - Dso. (The last equality holds since subt does not affect the 
variables in D). This means tha t  so is a unifier of {Ajsubl ,  D}. By the fact 
tha t  sub2 is a most general unifier of {Ajsubl ,  D},  there is a subst i tut ion 

8 t! s" such tha t  so - sub2 . Put  together, we obtain sub~sub~ - sublso - 
" what  was to be shown. �9 sub1 sub2s , 
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Defini t ion 

A computation of a logic program is called canonical if in each computation 
step the first literal (i.e. the literal at the leftmost position) in the goal 
clause is used for the resolution. (Notice that we consider clauses here as 
sequences, not as sets, and presume an ordering of the literals in the clause). 

T h e o r e m  

Let ( G , [ ] ) ~ -  F . . .  ~ F  (n, sub) be a successful computation of the logic 
program F. Then there exists a successful computation of F of same length 
which is canonical and which obtains the same computation result. 

P roof :  We assume that the given computation is canonical up to the ith 
computation step (i > 0). Now we show how to transform this computation 
into one of same length with the same computation result that is canonical 
up to step i +  1. 

Assume that after i computation steps the configuration (H, sub) is 
reached. Let H = ? -  A1 , . . . ,Ak .  The (i + 1)-th step is not canonical. 
Therefore, some literal At, l > 1, is used for resolution in this step, whereas 
this occurrence of literal A1 (or some instance of it) is used for resolution in 
some later computation step, say j (j > i+  ~). Now we apply the Swapping 
Lemma to the pairs of computation steps ( j -  1,j), ( j -  2, j -  1), . . . ,  
(i + 1, i + 2) and obtain a computation which is canonical up to length i + 1. 
(It is not wrong to be reminded of Bubble-Sort at this point). Successive 
application of the above procedure makes the whole computation canonical. 

The theorem asserts that it is allowed to restrict ourselves to computations 
which are canonical. (In other words, this type of restriction is complete, cf. 
Section 2.6). Of course, we still have to deal with the type 1 nondetermin- 
ism. This theorem explains in retrospect what the S (for selection function) 
in the abbreviation SLD exactly means. Under every selection strategy re- 
garding the type 2 nondeterminism (for example, the "left to right" strategy 
adopted in canonical computations) the SLD-resolution stays complete (for 
the class of Horn formulas). 

Observe that canonical SLD-refutations (or better: SLD-computations) 
operate like nondeterministic pushdown automata: The content of the push- 
down is the actual goal clause %A1, A2, . . .  ,Ak where A1 is the top element. 



136 CHAPTER 3. LOGIC PROGRAMMING 

In each computation step, the top element A1 is popped from the stack, and 
the procedure body C1 , . . . ,  Cn of some program clause B : -  C1 , . . . ,  Cn is 
pushed on the stack, provided Ai and B are unifiable. In contrast to push- 
down automata, the most general unifier sub provided by this unification is 
applied to the whole pushdown, so that the next goal clause has the form 

?- 61 sub,... ,  C,~ sub, A2 sub,... ,  Ak sub. 

A further aspect is that we keep track of the evaluated most general unifiers 
in the second component of configurations so that we are able to specify 
the computation result. 

We represent the canonical computations of a logic program F on input 
G as a tree where the root is labeled by the start configuration (G, []). The 
sons of a father node labeled with (G', sub) are labeled with the successor 
configurations of (G', sub) according to a canonical computation. For better 
readability we often leave out the second components of configurations, and 
just label a node by the corresponding goal clause. 

Example :  Consider the logic program 

1. : -  Q(y, y). 
2. 
3. 

and the goal clause ?-  Q(x, c). Then we obtain the following computation 
tree (where we have additionally labeled the edges by the number of the 
selected program clause): 
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?-- Q(z, c) 

1 2 

?-  Q(y, 

result: 

?- Q(v, ~), ~, ~) (~, 

3 

i ~ R(~, c), R(~, ~) [] 

: I result: 
[ 3 Q(b, c) 

infimte I 
computation I 

?- R(~, b) 

non-successful 
computation 

This tree has two successful computations with the different computation 
results Q(b, c) and Q(c, c). Further, there is a finite non-successful compu- 
tation (i.e. non-extendable to the empty clause). If in every step, the first 
program clause is used for resolution, we obtain an infinite computation, 
where the goal clauses become longer by one literal in each step. 

Exerc i se  111: In the approach taken above, clauses are sequences of liter- 
als, not sets of literals. So, identical elements in a sequence do not "melt" 
into a single element as for sets. It can happen now that pure propositional 
logic programs have infinite computations. Find an example! 

Next we want to consider the possibilities of deterministically evaluating 
canonical computation trees. We have eliminated the type 2 nondetermin- 
ism by introducing canonical computations. Type 1 nondeterminism seems 
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to be more sensitive to changes or restrictions in the evaluation order. The 
above examples show that  we cannot just  cut off certain parts of the tree. 
The (type 1) nondeterministic choice of the next program clause is very 
critical and determines whether a successful or non-successful (possibly in- 
finite) computation is obtained, and in case of a successfUl computation,  
the choices of program clauses determines the computation result. 

Since there is (apparently) no way of eliminating the type 1 nondeter- 
minism as we did in case of the type 2 nondeterminism, a deterministic 
evaluation strategy has to search the whole computation tree (for a given 
input) - at least until a first solution is found. In the following we will dis- 
cuss two principle possibilities: breadth-f irst  search and depth- f i rs t  search. 

In breadth-first search the search in the tree is performed so that  all 
nodes on depth t are visited (e.g. from left to right) before any node on 
depth t + 1 is visited (t = 0, 1, 2 , . . . ) .  It should be clear that  every successful 
computation in the computation tree of a logic program can be found this 
way after finitely many steps. In other words, the breadth-first search 
evaluation strategy is complete.  But this completeness is paid for in the 
form of computation time and space: To reach the nodes in the computat ion 
tree of depth t, the breadth-first search strategy needs to visit exponentially 
many nodes (in t) - provided the tree consists not only of a single path. 

Standard interpreters for the programming language PROLOG use the 
depth-first search evaluation strategy. Here, starting from the root of the 
tree, the subtrees are visited in some fixed order (from left to right) recur- 
sively. In contrast to breadth-first search the search goes into the depth of 
the tree first. Whenever a node is reached that  has no sons to search left 
the search returns to the father node (backtracking) and continues with the 
next brother node (if any). 

For example, breadth-first search evaluates the tree 

in the order 

W 

a b c 

x y z r s 

w, a, b, c, x,  y, z,  r, 8 
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whereas depth-first search in the order 

w, a, x, y, z, b, c, r, 8. 

The following algorithm realizes the depth-first backtracking evaluation 
strategy, as done in P ROLOG. 

P R O L O G ' s  E v a l u a t i o n  S t r a t e g y  

Given: Logic program F = (C1, C 2 , . . . ,  C,) ,  where 
Ci = Bi :-  Di,1, . . . ,  Di,,i, and goal clause G = ? -  A 1 , . . . ,  Ak. 

The main routine consists of 

success := false; 
evaluate(G, []); 
if  success t h e n  write('yes') else write( 'no'); 

and the recursive procedure evaluate works as follows: 

p r o c e d u r e  evaluate(G : goalclause ; sub : substitution); 
var  i"  i n t ege r ;  
b e g i n  

if G -  [] t h e n  
b e g i n  

H := (Ax A . . .  A Ak)sub; 
wri te( 'RESULT: ' ,H);  
success := t r u e  

e n d  
else {assume G has the form G = ? -  E x , . . . ,  Ek} 

b e g i n  
i . - 0 ;  
whi le  (i < n) a n d  n o t  success do 

b e g i n  
i : = i + l ;  
i f{E1, Bi) is unifiable using most general unifier s 

(where the variables in Bi have been renamed first) 
t h e n  

evaluate( ? -  (Di,1,. . . ,  Di,, , ,  E 2 , . . . ,  Ek)s, subs) 
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e n d  
e n d  

end;  

Exerc i se  112: In real PROLOG systems, after finding a successful com- 
putation, the user is asked whether he wants to see more. Modify the above 
algorithm accordingly. 

Observe that  PROLOG's  depth-first evaluation strategy might be faster 
than the breadth-first strategy. Consider a computation tree which has a 
successful computation of length t, and this computation is located at the 
very left of the tree. In this case depth-first will find it in about t search 
steps whereas breadth-first will still need exponentially many steps. 

If the solution is at the very right of the tree, then depth-first is at 
least as inefficient as breadth-first. Even worse: computation trees might 
contain infinite paths (see the above example), therefore it is possible that  
the depth-first evaluation gets into an infinite loop before it ever reaches the 
successful computation. In other words, depth-first i s -  although sometimes 
more efficient than breadth-first - an incomplete evaluation strategy. 

We summarize this discussion in the following theorem. 

T h e o r e m  

The breadth-first evaluation strategy for logic programs is complete. The 
depth-first evaluation strategy is incomplete. 

Exercise 113: One might try the following solution towards enforcing 
completeness of the depth-first search strategy. After the logic program 
F and the goal clause G are given, the program clauses in F are ordered 
in "some appropriate way". After this preprocessing step, the depth-first 
search strategy starts. (The hope is that this might turn all infinite com- 
putation paths in the tree to the right of the potential solution path). 
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Show that this approach fails, since there are examples for F and G 
such that F u {G} is unsatisfiable, and therefore, by completeness of SLD- 
resolution, a successful computation exists, but the depth-first evaluation 
strategy will go into an infinite loop under every arrangement of the pro- 
gram clauses. 

Hint: Consider the logic program for the monkey-and-banana problem. 

By the advantages in efficiency, most PROLOG interpreters stick to this 
incomplete depth-first evaluation strategy. In a way, the problem is passed 
off to the programmer. He has to be aware of the PROLOG evaluation 
mechanism and has to plan the arrangement of his program clauses care- 
fully. Even this will not help in some cases (see Exercise 113). To overcome 
this difficulty, PROLOG provides certain non-logical operators, like the cut, 
that influence PROLOG's evaluation order, see the next section). This is in 
conflict with the ideal conception of logic programming: the "programmer" 
should only provide the logical problem specification, whereas the system 
takes care of the algorithmic evaluation of the problem specification. 

Kowalski introduced the equation 

algorithm = logic + control 

in the sense that algorithms always contain implicitly two components: a 
logic component which specifies the knowledge about the problem in ques- 
tion, and a control component which constitutes the solution strategy for the 
problem. In usual programming languages both components are strongly 
mixed and not separable, whereas in a logic programming language the pro- 
gram should only embody the logic component, and the control component 
should be a matter of the system, that carries out the evaluation algorithm. 

This ideal case described above is certainly not yet realized by existing 
PROLOG implementations, using the depth-first evaluation strategy. On 
the other hand, the breadth-first strategy is hopelessly inefficient. One has 
to compromise on the ideal concept of logic programming (total separation 
of logic and control component) and on efficiency. 

3.4 P R O L O G  

This section is not intended to be a PROLOG manual. We only wish to 
demonstrate some of the aspects that are relevant when stepping from the 
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pure logic programming concep t -  as discussed in the last sec t ions -  to a 
real-life programming language, like PROLOG. PROLOG was developed 
in the seventies by a research group around A. Colmerauer in Marseilles, 
France. 

First, there must be syntactical conventions to enable a distinction 
between the different syntactical entities that occur in a logic program 
(clauses, variables, function and predicate symbols, logical operators). For 
example, in PROLOG one has to use upper-case symbols to identify vari- 
ables, whereas function symbols and predicate symbols are written in lower- 
case. Furthermore, every clause must end with a period. In this section we 
will adopt these conventions. 

In a practical programming language, concepts are needed that  allow 
one to read data from some external device, like the keyboard or some file. 
The program must be able to write on the screen or into some file. In PRO- 
LOG, these tasks are accomplished by providing certain syslem predicates 
like read and wr~le that  cannot be modified by the user. From the logical 
standpoint,  these predicates do not have a meaning (they immediately eval- 
uate to t r u e  (or 1)), but they produce side e~ecls, like writing a symbol 
on the screen or into a file. 

If the PROLOG programmer uses such system predicates, it becomes 
necessary that  he/she is aware of the evaluation strategy of PROLOG. A 
goal clause like 

?- read(X), compute(X, Y), write(Y). 

can be evaluated in a sensible way only from left to right. This is in contrast 
to the theoretical investigations of Section 3.3 where it was shown that  such 
a logic program (without side effects) could also be evaluated from right to 
left (cf. the Swapping Lemma). 

Other system predicates provided in PROLOG enforce certain instanti- 
ations of variables that deviate from the unification algorithm. An example 
is the predicate is. For example, if the P ROLOG system find the clause 
is(X, Y �9 5) (or in infix notation: X is Y �9 5) and Y is already bound (i.e. 
instantiated) to the constant 7, then X will be instantiated to 35. By this 
concept it is possible to perform arithmetical computations in PROLOG. 
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E x a m p l e  (cf. Exercise 100): 

f ib(X,  Y )  X 1  is X - 1, X 2  is  X - 2, 

f ib(X1, Y1) , fi b ( X 2 , Y2), Y is Y1 + Y2 . 

E x e r c i s e  114" Using the is predicate, compute the factorial function by a 
PROLOG program. 

Using the system predicate is, the invertibility of the parameter passing 
mechanism is lost. The above program for the Fibonacci function can only 
be used in a way that  the first parameter is the input parameter and the 
second is the output parameter.  

A further aspect of PROLOG implementations is that  functions and 
predicates can either be written in prefix notation (e.g. +(5,7)) or infix no- 
tat ion (5+7). Further, PROLOG does not make a real distinction between 
function and predicate symbols. This goes even so far that  the (logical) 
symbol " -  that  stands for the implication sign is handled like a special 
system predicate/function, written in infix notation, that  needs a special 
evaluation by the PROLOG system. The non-distinction between predicate 
and function symbols has the consequence that  clauses and terms have to 
be considered as the same syntactical objects. Therefore, PROLOG al- 
lows variables on clause positions, and allows them to be instantiated with 
clauses. Therefore, a PROLOG program is able to manipulate its own 
"data base" (by the system predicates assert and retract). 

More complex data  structures are expressed in PROLOG by using nest- 
ings of terms. For example, the term 

cons(a, cons(b, cons(c, nil))) 

denotes a list consisting of the three elements a, b, and c. Here, the constant 
nil denotes the empty list and the binary function symbol cons is the l ist  
constructor. In a term of the form cons(x, y), x denotes the first element of 
the list and y denotes the rest of the list (which is itself a list). It is more 
convenient to use a more succinct representation for lists. PROLOG allows 
one to write 

[al, a2 , . . . , a k ]  
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instead of 
cons(at, cons(a2,. . ,  cons(ak, ni l ) . . . ) ) .  

Furthermore, 
[~ly] 

is an abbreviation for 
cons (x, y) 

and [] stands for the empty list niL 

E x a m p l e :  [[a, [b, c]] I [d, eli is a shorthand for 

cons(cons(a, cons(cons(b, cons(c, nil)), nil)), cons(d, cons(e, nil))). 

The following diagram shows the structure of this term where each dot 
stands for an application of cons. 

~ nil 
d e 

; nil 

nil 

b c 

The most common operation on lists is the operation of concatenation 
(i.e. appending one list to another) which is denoted by append. The fol- 
lowing logic program describes this operation. 

app~=d ([], L, L). 
append([XlLt], L2, [XILa]) �9 - append(L1, L2, L3). 

Here L, Lt, L2, L3 are variables, and append(L1, L2, L3) expresses the 
fact that L3 is the concatenation of the lists Lt and L2. 

E x e r c i s e  115: Present a successful computation of the above program 
with the given goal clause 

7-  append([a, b, c], [a, e,/1, X). 
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What are the successful computations with the goal clause 

?- append ( X, Y, [a, b, c, a]). 

Here X, Y are variables. 

Exerc i se  116: Present a logic program that reverses a list. So, 
reverse(L1,/,2) should express that 1,2 is the reversed version of L1 (Exam- 
ple: .7._ reverse([1, [2, 3], 4, 5], Z) leads to the result g' : [5, 4, [2, 3], 1]). 

Modify this program so that it reverses every sublist, too, not just 
the top level of the list. Call this predicate deepreverse (Example: 
.z_ deepreverse([1, [2, 3], 4, 5], Z) leads to the result g = [5, 4, [3, 2], 1]). 

Exerc i se  117: PROLOG has a built-in system predicate atomic(X) that 
is evaluated successfully if and only if at the time of evaluation the variable 
X is instantiated with a constant. Formulate a logic program (using the 
predicates atomic and ada~ that computes the number of leaves of the 
binary tree that is represented by a list. For example, 

?- b, N). 

should lead to the result N -  5. 

Example"  The following program is able to permute a list. 

], []). 
permute([XIY], g) :- permute(Y, W), insert(X, W, g). 
insert(A, B, [AIB]). 
insert(A, [BIC], [BID]) : -  insert(A, C, D). 

E.g., the goal clause 

?- permute([it, never, rains, in, ealifornia], Z) 

leads to the results 
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Z = [it, never, rains, in, californi~ 
Z = [never, it, rains, in, california] 

Z = [never, rains, it, in, california] 
Z = [never, rains, in, it, california] 

E x e r c i s e  118: The following program is able to sort a list - but in a very 
inefficient way. 

~o~(L,, L~) :- p ~ ~ t ~ ( L , ,  L~), o~d(Z~). 
o~d([]). 
o~d([X]). 
ord([Xl[YIg]]) :-  X <_ Y, ord([YIg]). 

Write a PROLOG program for Quicksort. 

E x a m p l e :  The PROLOG program below translates ari thmetical  expres- 
sions, resp. assignments, into assembler code. For example, consider 

z : = ( a . b ) + c .  

In this case we obtain 

[[load, a], [load, b], mul, [load, c], add, [store, z]] 

Here load means loading an element on a stack, and mul pops the top two 
stack elements, multiplies them, and pushes the result on top of the stack 
(add works analogously for addition). The command store stores the top 
stack element in the memory. 

compile(X := Y, Z) :- compile(Y, W), 
append(W, [[ao,~, Xl], Z). 

compile(X �9 Y, Z) :-  compile(X, U), 
compile(Y, V), 
append (U, V, W),  
~pp~d(W, [~U] ,  z).  
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compile(X + Y, Z) :- compile(X, U), 
compile(Y, V), 
append (~, V, W), 
append(W, [add], g). 

compile(X, [[load, X]]) : -  atomic(X). 

E x e r c i s e  1 1 9 :  First define formally the syntax of a programming language 
ASCA (a suitable subset of PASCAL), and then write a compiler for ASCA- 
programs in PROLOG. 

Exerc ise  120: Implement a PROLOG interpreter in PASCAL that realizes 
PROLOG's depth-first search strategy, and additionally is able to handle 
at least some of PROLOG's built-in predicates. 

PROLOG's incomplete depth-first evaluation strategy was already men- 
tioned. Moreover, in Exercise 113 it was discussed that this incompleteness 
is, in a sense, inherent. It cannot be eliminated by rearranging the order of 
the clauses. Obviously this is a dilemma, and raises the question what pos- 
sibilities there are to avoid such problems. PROLOG provides a somewhat 
peculiar way out of this dilemma, namely the cut. 

Syntactically, the cut is like an atomic formula and is denoted by an 
exclamation mark (!). This type of atomic formula is only allowed on the 
right side of PROLOG procedure definitions (i.e. in the procedure body). 

Example: 
a : -  b, c, !, d. 

The presence of a cut does not influence the logic (i.e. semantics) of a clause, 
but the depth-first evaluation strategy is altered. Some part of the search 
tree will be cut off whenever such a cut symbol is present. By this, it is 
possible to ignore parts of the search tree that contain infinite computation 
paths (which are "dangerous" for the depth-first evaluation). On the other 
hand, the cut can just as well be "misused" to ignore parts of the search 
tree with existing solutions. 
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Here the opinions about the cut are split: Some programmers really 
want to have a tool in hand that  allows influencing the search strategy and 
allows jumping over existing solutions (this technique will play a role below 
when we talk about the negation). 

The other opinion is that  the cut is in conflict with the ideal of logic 
programming. In logic programming languages the programmer should only 
specify what the problem to be solved is, but not how to solve it. A concept 
like the cut certainly belongs to the how-category. The cut in PROLOG 
is somehow comparable to the goto in standard operational programming 
languages. 

How does the cut work in detail? Whenever a cut in a goal clause, like 

2_. .,I a, b, c. 

is evaluated for the first time, it leads to success immediately (as if there 
would be a fact consisting of "!." in the logic program). Then the next goal 
clause to evaluate would be 

?-  a ,b ,c .  

But suppose the search process, by the backtracking mechanism, returns 
to the goal clause 

2_ t a ,b ,c .  �9 o ,  

since there is no solution found in the subtree below the node ? -  a, b, c. In 
this case the search process deviates from the depth-first search order. A 
"jump" is enforced that  leads to the last parent goal clause in the search tree 
that  did not contain the cut. This goal clause is then considered as evaluated 
non-successfully (that is, the Boolean variable success is set to false in the 
evaluation algorithm, cf. last section). This action has the consequence that  
potential subtrees located to the right of the node labeled with ?-!, a, b, c. are 
not considered - no matter  whether they contain successful computations 
or not. 

E x a m p l e :  Consider the logic program 

b : - d , ! , e .  
d. 



3.4. P R O L O G  149 

and the goal clause ? -  a. The following diagram demonstrates the whole 
search tree and the depth-first search order - and how the order is influenced 
by the cut. 

search order 
.y 

"--7 ? - - a  

? . ~  ? -  o,c ~. \ a o o  

, .  7_ d , '  e , c  ~ . . .  

c'- - -r  
t 

\ 

. . e~C " ' "  

I 1 effect of the cut  

~-f  ?-- e, c 4  / 
t \ 

\ " "  ] 

(no successful 
computa t ion  found here) 

subtrees  

not  

searched 

Exerc i se  121: Modify the PROLOG evaluation algorithm from Section 
3.2 such that the cut is correctly handled. 

Exerc i se  122: The following piece of program 

a : - b , ! , c .  
a : - d .  

is used in actual PROLOG programs to simulate the well known i f - then-  
else construct from standard programming languages. In a sense, the above 
program can be interpreted as 
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a : -  i f  b t h e n  c e lse  d. 

Analyze the effect of the cut in the above program using SLD search trees. 

E x e r c i s e  123: Consider the PROLOG program 

happy :-  birthday, christmas. 
happy :-  birthday. 
happy. 
birthday : -  pigscanfly 
christmas :-  pigscanfly 
birthday : -  birthday 

(a) Construct  the SLD search tree for the goal clause .7_ happy. 

(b) Rearrange the order of the clauses such that  the depth-first 
search strategy finds a solution for the goal .7.__ happy. 

(c) Insert a cut in the above program so that  the (modified) search 
tree becomes finite - but as large as possible. 

(d) Describe the effect of inserting a cut in any of the 3 possible 
positions in the first clause. 

In the following we summarize the possible and typical applications of the 
cut. 

1. After finding a first solution, an insertion of a cut allows one to forbid 
every further search for a solution. In some contexts it is clear that  
there is no other solution, or that  the part  of the tree not searched 
contains infinite computat ion paths. For example, in the logic pro- 
gram for addition, an insertion of a cut in the clause that  expresses 
the base of the recursion will enforce that  there is no further search 
whenever the first (and unique) solution has been found. 

a(x, O, x) : -  !. 
a(x, s(y), s(z)) :-- a(x, y, z). 
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2. The cut allows to construct clauses that  perform a similar action as 
the i f - then -e l se  known from standard programming languages (cf. 
Exercise 122). The situation with the negation is similar (this is 
discussed in more detail below). 

The sensible use of the cut allows one to improve the efficiency of 
programs because subtrees which are known to contain no solutions 
can be cut off in the search process. Although there is no general rule 
about where to introduce a cut to improve the efficiency- it depends 
very much on the intuition and experience of the programmer. 

. The cut allows one to overcome the logical incompleteness of PRO- 
LOG's depth-first evaluation strategy. Subtrees containing infinite 
computation paths can cut off. 

Previously we discussed the notion that there are several reasons for re- 
stricting the predicate logic to Horn clauses in the PROLOG programming 
language. It was this restriction which permitted the procedural interpre- 
tation of logic programs, and which allowed us to develop such a finely 
structured theory (Clark's Completeness Theorem, the Swapping Lemma, 
and the various notions of semantics). But there can be cases where Horn 
formulas are too weak or not adequate to express the problem context. Here 
the negation plays a special role. Remember that  the negation of a Horn 
formula in general is not equivalent to any Horn formula. But sometimes 
it is necessary to know whether a negative literal, say --A, follows from a 
logic program F. Viewed formally, this would correspond to a goal clause 
of the form ? -  --A or ? -  not(A). Surprisingly, the logical answer to such 
a question is always "no". 

E x e r c i s e  124: Prove that  there is no set of Horn clauses F and no negative 
literal -,A such that  --,A is a consequence of F. In other words, Horn clause 
programs do not allow one to draw negative conclusions. 

Therefore, our first a t tempt  failed. But instead of asking the question 
whether the negation of A is a consequence of F,  we now ask whether A is 
not a consequence of F. Obviously, in general this is not the same. In fact, 
to postulate equivalence of both notions means the same as claiming the 
compleleness of the logic program F (in the sense discussed in Section 2.3), 
that  is, for all closed formulas A, either A E Cons(F) or -~A E Cons(F). 
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Assuming this condition holds, whenever A is not a consequence of F,  then 
A is false (i.e. unsatisfiable). In this context, this condition is called the 
closed world assumption. Since A is not a consequence of F if and only if 
F A -~A is satisfiable if and only if the empty clause is not derivable from 
the clause set F U { {-~A} }, this situation is called negation by failure. 

It is desirable to have at least this 'negation by failure' available in 
PROLOG. That  is, if A cannot be proved to be a consequence of F,  then 
assume that -~A is a consequence of F (and give the answer 'yes' on the 
query ? -  ~A.) Still, this cannot be implemented - by basic principles: 
If for every A and F it could be determined in finite time whether A is a 
consequence of F,  then the decidability of the predicate logic would follow. 
This contradicts the results obtained in Section 2.3. (The undecidability 
result still holds when we restrict ourselves to Horn clauses). 

The next weaker form of negation is negation by finite failure. It means 
that -~A is a consequence of F is assumed if the SLD-computation tree 
of F with goal clause A is non-successful and finite. Exactly this form of 
negation is implemented in PROLOG: The goal clause .7- not(p) as input 
causes the PROLOG interpreter to search for successful computations of 
the form 

( ?- p, [ ] ) I T ' - "  (o, ,,,b). 
Only if the search tree for this query is finite and does not contain a suc- 
cessful computation, the PROLOG interpreter outputs 'yes', otherwise 'no'. 
(Notice that apart from this, the interpreter cannot output any computa- 
tion result). This form of negation is dangerous because the search for a 
successful computation might lead to an infinite path. 

Negation by finite failure as introduced above can easily be expressed 
in PROLOG i tse l f -  'misusing' the cut (existing solutions are cut off here). 

nor : -  P, !, fail. 
no~(P). 

Here fail is a standard predicate whose evaluation always ends non- 
successfully so that backtracking occurs (just as if there is no program 
clause with procedure head fail). Observe that the variable P in the above 
program takes as values atomic formulas (instead elements of the Herbrand 
universe). 

Exe rc i se  125: Trace back the evaluation of the query .z_ no,(not(not(a))). 
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First suppose that  a is a fact contained in the logic program, then that  it 
is not. 

E x e r c i s e  126: Consider the logic program 

p(X) :-  !, q(X). 
p(a). 
q(b). 
q(a) :-  q(a). 

Find out what  PROLOG answers to each of the following queries. 

7.- p(a). 
?- =ot(p(a)). 
?- q(a). 
7.-- not(q(a)). 
.7- q(X), not(p(X)). 
?- not(p(X)), q(X). 

A further problem with PROLOG's  form of negation is that  in a goal 
clause of the form 

?- . . .  ,~ot(t).. .  

the term t (respectively the atomic formula t) should not contain any unin- 
s tant iated va r i ab les -  at the time when t is evaluated. This can lead to an 
incorrect evaluation result. Consider for example the program 

p(a). 
q(b,b). 

and the goal clause 

?- .o,(p(X)), q(X, x). 
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The desired answer X - b will not be obtained (Why?).  

The si tuation is different with the goal clause 

?- q(X, x), 

which leads to the answer X - b. 

The intention of this section is to convince the reader of the fact that  
P R O L O G  is just  one possibility for realizing the ideas of logic programming 
in the context of a usable programming language. It should be seen tha t  
other concepts are thinkable, and that  the research in this direction is not 
yet settled. 
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Table  o f  N o t a t i o n s  

IN is the set of natural  numbers, including zero, IN = {0, 1, 2 , . . . }  

{0, 1}* is the set of finite 0-1-strings, including the empty string 

~, {o, 1}* = {~, o, 1, oo, ol, lo, 11, ooo, . . . }  

{o, 1}+ = {o, 1}* - {~} = {o, 1, oo, ol,  lo, 11, ooo, . . . }  

N o t a t i o n s  d e f i n e d  in t h e  t e x t :  

4 Res'(F) 
V 4 3 42 
A 14 V 42 
--, 4 F* 42 

4 Free(F) 43 
Ai%l 5 V~ 44 
Vin__l 5 IA 44 
,4 5,46 ]'A 44 
~ 5 pA 44 

9, 47 x A 44 
9, 47 fltfx/u] 46 

= 14, 51 [x/t] 53 
CNF 18 RPF 56 
DNF 19 e 64 
E2 31 Th(.A) 68 
Res(F) 32,89 Cons(M) 69 
Resn(F) 33,89 D(F) 70 

33,89 E(F) 74 
[] 84,142 
V H  92 
ANSWER 
: -  115 
? -  116 

119 
Sproc 126 

Stood 127 
OPF 128 
op?~ 128 
FPF 128 
~]ixpoint 129 
[:~ lY] 142 
! 145 

not 149,150 
fail 150 

109 

161 
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absorption 15 
Ackermann 121 
answer generation 109 
answer predicate 111 
append 144 
arithmetic 68 
arity 42 
assert 142 
assignment 5 
associativity 15 
atomic 144 
atomic formula 4, 42 
automated theorem proving 1 
axiom 68 
axiom of choice 58 
axiom system 28 
axiomatizable 69 

base clause 98 
binary resolution 106 
bound 42 
breadth-first search 137 

calculus 29 
canonical computation 134 
canonical structure 70 
Clark 126 
clause 30 
clause graph 37 
closed formula 42 
closed world assumption 151 
C N F  18 
Colmerauer 141 

commutativity 15 
compactness theorem 26 
compile 146 
complete 68, 135, 137 
completeness 29, 98, 151 
computability theory 62 
computable 62 
computation 122 
conclusion 24 
configuration 121 
conjunction 4 
conjunctive normal form 18 
cons 143 
consequence 10 
constant 42 
contradictory 9, 47 
control component 140 
correctness 29, 69 
cut 146 

decidable 62 
deepreverse 144 
definite clause 100, 118 
deMorgan 15 
denotation 129 
depth first search 137 
derivation 35 
disjunction 4 
disjunctive normal form 18 
distinguishability index 42 
distributivity 15 
D N F  18 
don't care nondeterminism 133 

163 
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double negation 15 

empty clause 31 
equivalence 14, 51 
evaluation strategy 131, 138 
existential quantifier 42 

fact 117 
Fibonacci 120 
fnitely axiomatizable 29, 69 
first order predicate logic 48 
fixpoint 131 
fixpoint semantics 131 
formula 1, 4, 42 
free 42 
function symbol 42 

Gilmore 76 
Gilmore's procedure 76 
goal clause 100, 118 
GSdel 69, 70 
goto 147 
ground instance 78 
ground resolution 78 
ground resolution procedure 79 
ground set 44 
ground substitution 78 
group 51, 69 

halting clause 118 
Herbrand 70 
Herbrand expansion 74 
Herbrand model 72 
Herbrand structure 71 
Herbrand universe 70 
Herbrand's theory 1, 2, 70 
hold 9 
Horn 23 
Horn clause program 117, 118 
Horn formula 1, 23 

idempotency 15 
incompleteness theorem 69 

inconsistent 67 
induction on formula structure 8 
input clause 98 
input parameter 114 
input resolution 99 
input restriction 99 
insert 145 
instance 78 
interpretative semantics 128 
interpreter 121 
invertible parameter passing 114 
is 142 

least fixpoint 131 
leaves 144 
lifting lemma 90 
linear resolution 97 
literal 18, 30 
logic 1 
logic component 140 
logic program 118 
logic programming 1, 109 
LSwenheim 74 
LUSH-resolution 101 

marking algorithm 25 
matrix 42 
mgu 83 
minimally unsatisfiable 39, 103 
mirror principle 9 
model 1, 9, 47 
model theoretic semantics 129 
model theory 68 
monadic 67 
monkey-and-banana problem 114 
most general unifier 83 

N-resolution 97 
N-restriction 97 
negation 4, 150 
negation by failure 151 
negation by finite failure 151 
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negative 18 
negative clause 39 
nil 143 
non-constructive proof 28 
nondeterminism 131 
nondeterministic 122 
normal form 14, 18, 51 
not 152 
NP-completeness 39 

occurrence check 87 
ord 145 
output parameter 114 

P-resolution 97 
P-restriction 97 
PCP 63 
Peano arithmetic 69 
permute 146 
positive 18 
positive clause 39 
Post's Correspondence Problem 63 
premise 24 
predicate logic 41 
predicate symbol 41 
prenex form 55 
Presburger arithmetic 68 
problem 63 
problem specification 140 
procedural semantics 128, 129 
procedure body 118 
procedure call 118 
procedure clause 117 
procedure head 118 
process 128 
program activation 118 
program call 118 
program clause 100, 118 
program verification 1 
programming language 1 
PROLOG 2, 138, 141 
proof l, 35 

propositional logic 3 
pushdown automaton 135 

quantifier 42 
query clause 118 

rectified 55 
recursive 124 
recursively enumerable 69, 77 
reduction 64 
refinement 1, 2 
refinements of resolution 97 
refutation complete 33 
renaming 54 
resolution 1, 29, 88 
resolution graph 36 
resolution lemma 32 
resolution theorem 33, 92 
resolvent 30, 88 
restriction 97 
result 122 
retract 143 
reverse 144 
R P F  57 

s-equivalence 59 
satisfiable 8, 26, 47 
second order predicate logic 48 
selection function 101 
semantics 1, 46, 128, 129, 131 
semi-decidable 1, 69 
semi-decision procedure 61, 76 
set-of-support restriction 99 
side clause 98 
side effect 141 
Skolem 70, 74 
Skolem formula 56 
SLD-resolution 2, 100 
solution 63 
sort 145 
ST 16 
stack 51 



166 I N D E X  

standardized SLD-resolution 118 
strategy 97, 131 
structure 44 
subformula 4, 42 
substitution 54 
substitution theorem 14 
successful computation 122 
suitable 45 
suitable assignment 9 
syntax 1, 4, 41 
system predicate 141 

tautology 9 
term 41, 42 
theorem 67 
theory 67 
theory of groups 69 
transition relation 121 
translation lemma 54 
true 47 
truth table 11 
truth value 1, 5, 46 
type 1 nondeterminism 131 
type 2 nondeterminism 131 

undecidable 61, 62 
unifiable 83 
unification algorithm 84 
unification theorem 84 
unifier 83 
unify 83 
unit 97 
unit clause 37 
unit preference strategy 97 
unit resolution 100 
universal closure 92 
universal quantifier 42 
universe 44 
unsatisfiable 47 

valid 9, 47 
value 46 
variable 41 
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