
Logic for
Computer Scientists

Uwe Sch6ning

Repr in t of the 1989 Edi t ion

Birkh~iuser

Boston �9 Basel �9 Berlin

Uwe Schtining
Abt. Theoretische Informatik
Universit~it Ulm
Oberer Eselsberg
D-89069 Ulm
Germany

English hardcover edition originally published as Volume 8 in the series

Progress in Computer Science and Applied Logic.

German edition was published in 1987 as Logikfiir Informatiker by

Wissenschaftsverlag, Mannheim �9 Vienna �9 Zttrich.

ISBN-13:978-0-8176-4762-9
DOI: 10.1007/978-0-8176-4763-6

e- ISBN-13:978-0-8176-4763-6

Library of Congress Control Number: 2007940259

�9 Birkh~iuser Boston
All rights reserved. This work may not be translated or copied in whole or in part without the writ-
ten permission of the publisher (Birkh~iuser Boston, c/o Springer Science+Business Media LLC, 233
Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de-
veloped is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Cover design by Alex Gerasev.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

www. b irkhaus e r. com

Uwe Sch6ning

Logic for
Computer Scientists

With 34 Illustrations

1989 Birkh~user
Boston" Basel" Berlin

Uwe SchOning
Abt. Theoretische Informatik
Universit~it Ulm
Oberer Eselsberg
D-89069 Ulm
Germany

Library of Congress Cataloging-in-Publication Data
Sch6ning, Uwe, 1955-

Logic for computer scientists / Uwe Sch6ning
p. cm. - - (Progress in computer science and applied logic ;

v.8)
Includes bibliographical references.
ISBN 0-8176-3453-0 (alk. paper).
1. Logic, Symbolic and mathematical 2. Logic programming.

I. Title.
QA9.$363 1989 89-17864
511.3--dc20 CIP

Logic for Computer Scientists was originally published in 1987
as Logikfiir Informatiker by Wissenschaftsverlag, Mannheim �9 Vienna �9 Ziirich.

Printed on acid-free paper. Lab-) |
�9 1989 Birkhauser Boston Birkhiiuser @
Third printing 1999

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Birkh~iuser Boston, c/o Springer-Verlag New York, Inc., 175 Fifth Avenue,
New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former
are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks
and Merchandise Marks Act, may accordingly be used freely by anyone.

ISBN 0-8176-3453-3
ISBN 3-7643-3453-3

Typeset by the author using LATEX.
Printed and bound by Quinn-Woodbine, Woodbine, NJ.
Printed in the United States of America.

9 8 7 6 5 4 3

Wolfram SchwabhSuser
(~ 98~ - ~ 9 8 5)

in grateful memory

P r e f a c e

By the development of new fields and applications, such as Automated
Theorem Proving and Logic Programming, Logic has obtained a new and
important role in Computer Science. The traditional mathematical way of
dealing with Logic is in some respect not tailored for Computer Science ap-
plications. This book emphasizes such Computer Science aspects in Logic.
It arose from a series of lectures in 1986 and 1987 on Computer Science
Logic at the EWH University in Koblenz, Germany. The goal of this lec-
ture series was to give the undergraduate student an early and theoretically
well-founded access to modern applications of Logic in Computer Science.

A minimal mathematical basis is required, such as an understanding
of the set theoretic notation and knowledge about the basic mathematical
proof techniques (like induction). More sophisticated mathematical knowl-
edge is not a precondition to read this book. Acquaintance with some
conventional programming language, like PASCAL, is assumed.

Several people helped in various ways in the preparation process of the
original German version of this book: Johannes KSbler, Eveline and Rainer
Schuler, and Hermann Engesser from B.I. Wissenschaftsverlag.

Regarding the English version, I want to express my deep gratitude to
Prof. Ronald Book. Without him, this translated version of the book would
not have been possible.

Koblenz, June 1989 U. SchSning

C o n t e n t s

I n t r o d u c t i o n 1

1 P R O P O S I T I O N A L L O G I C 3

1.1 F o u n d a t i o n s . 3

1.2 E q u i v a l e n c e a n d N o r m a l F o r m s 14

1.3 H o r n F o r m u l a s . 23

1.4 T h e C o m p a c t n e s s T h e o r e m 26

1.5 R e s o l u t i o n . 29

2 P R E D I C A T E L O G I C 41

2.1 F o u n d a t i o n s . 41

2.2 N o r m a l F o r m s . 51

2.3 U n d e c i d a b i l i t y . 61

2.4 H e r b r a n d ' s T h e o r y . 70

2.5 R e s o l u t i o n . 78

2.6 R e f i n e m e n t s of R e s o l u t i o n 96

3 L O G I C P R O G R A M M I N G 1 0 9

3.1 A n s w e r G e n e r a t i o n . 109

3.2 H o r n C l a u s e P r o g r a m s . 117

3.3 E v a l u a t i o n S t r a t e g i e s . 131

3.4 P R O L O G . 141

B i b l i o g r a p h y 1 5 5

T a b l e o f N o t a t i o n s 161

I n d e x 1 6 3

I n t r o d u c t i o n

Formal Logic investigates how assertions are combined and connected, how
theorems formally can be deduced from certain axioms, and what kind of
object a proof is. In Logic there is a consequent separation of syntactical
notions (formulas, proofs) - these are essentially strings of symbols built up
according to certain rules - and semantical notions (truth values, models)
- these are "interpretations", assignments of ~meanings" to the syntactical
objects.

Because of its development from philosophy, the questions investigated
in Logic were originally of a more fundamental character, like" What is
truth? What theories are axiomatizable? What is a model of a certain
axiom system?, and so on. In general, it can be said that traditional Logic is
oriented to fundamental questions, whereas Computer Science is interested
in what is programmable. This book provides some unification of both
aspects.

Computer Science has utilized many subfields of Logic in areas such
as program verification, semantics of programming languages, automated
theorem proving, and logic programming. This book concentrates on those
aspects of Logic which have applications in Computer Science, especially
theorem proving and logic programming. From the very beginning, edu-
cation in Computer Science supports the idea of strict separation between
syntax and semantics (of programming languages). Also, recursive defini-
tions, equations and programs are a familiar thing to a first year Computer
Science student. This book is oriented in its style of presentation to this
style.

In the first Chapter, propositional logic is introduced with emphasis
on the resolution calculus and Horn formulas (which have their particular
Computer Science applications in later sections). The second Chapter intro-
duces the predicate logic. Again, Computer Science aspects are emphasized,
like undecidability and semi-decidability of predicate logic, Herbrand's the-

2 INT ROD UCTION

ory, and building upon this, the resolution calculus (and its refinements)
for predicate logic is discussed. Most modern theorem proving programs
are based on resolution refinements as discussed in Section 2.6.

The third Chapter leads to the special version of resolution (SLD-
resolution) used in logic programming systems, as realized in the logic
programming language PROLOG (= Programming in Logic). The idea
of this book, though, is not to be a programmer's manual for PROLOG.
Rather, the aim is to give the theoretical foundations for an understanding
of logic programming in general.

E x e r c i s e 1: "What is the secret of your long life?" a centenarian was
asked. "I strictly follow my diet: If I don' t drink beer for dinner, then I
always have fish. Any time I have both beer and fish for dinner, then I do
without ice cream. If I have ice cream or don't have beer, then I never eat
fish." The questioner found this answer rather confusing. Can you simplify
it?

Find out which formal methods (diagrams, graphs, tables, etc.) you used
to solve this Exercise. You have done your own first steps to develop a
Formal Logic!

Chapter 1

P R O P O S I T I O N A L
L O G I C

1.1 Foundat ions

Propositional logic explores simple grammatical connections, like and, or
and not, between the simplest "atomic sentences". Such atomic sentences
are for example:

A = "Paris is the capital of France"

B = "mice chase elephants"

Such atomic components (of possibly more complex sentences) can be either
~rue or false. (In our understanding of the world, A is true but B is false.)
The subject of propositional logic is to declare formally how such "truth
values" of the atomic components extend to a truth value of a more complex
structure, such as

A and B.

(For the above example, we know that A and B is false because B is
already false.)

That is, we are interested in how the notion of a truth value extends
from simple objects to more complex objects. In these investigations, we
ignore what the underlying meaning of an atomic sentence is; our whole
interest is concentrated on the truth value of the sentence.

4 CHAPTER 1. PROPOSITIONAL LOGIC

For example, if

A - "Charlie is getting s i c k "

B = "Charlie is consulting a doctor"

then there is a big difference in colloquial language whether we say "A and B"
or "B and A".

In the following definition we ignore such aspects occurring in n a t u r a l
language. All atomic sentences (now called atomic formulas) are thought
of being enumerated as A1,A2,A3,. . . ignoring the possible "meanings" of
such formulas.

Def in i t ion (syntax of propositional logic)

An atomic formula has the form Ai where i = 1, 2, 3,
defined by the following inductive process:

Formulas are

1. All atomic formulas are formulas.

2. For every formula F, -~F is a formula.

3. For all formulas F and G, also (F V G) and (F A G) are formulas.

A formula of the form -~F is called negation of F. A formula of the form
(F V G) is called disjunction of F and G, and (F A G) is the conjunction
of F and G. Any formula F which occurs in another formula G is called a
subformula of G.

E x a m p l e :
F are:

F = -~((A5 A A6) V -~A3) is a formula, and all subformulas of

F, ((A~ A A6) V ~A3), (As A A6), As, A6, --A3, A3

We introduce the following abbreviations which allow a more succinct rep-
resentation of formulas:

A, B, C , . . . instead of A1, A2, An, . . .

(/'1 ~ / ' 2) instead of (~F1 V F2)

1.1. FOUNDATIONS 5

(F1 *-+ F2) instead of
n

(V F ,) instead of
i=1

n

(A F i) instead of
i=1

((F, A F2) v (-~F1 A -~F2))

(. . . ((F~ v F2) v F3) V .. �9 V P .)

(. . . ((F 1 A F2) A F3) A �9 �9 �9 A Fn)

Here, F1, F ~ , . . . can be arbitrary formulas. In particular, that means tha t
(A ~-~ E) is an abbreviation for the formula

((A A E) V (-~A A-~E))

which, again, is an abbreviation for

((A1 A As) V (-'A1 A- 'As)) .

Notice that formulas are nothing else but strings of symbols (i.e. syntac-
tical objects). They do not have a "content" or "meaning" at the moment.
Therefore, it would be incorrect (or premature) to read A as "and", and Y
as "or". Better would be, say, "wedge" and "vee".

Formulas - and the components occurring in formulas - obtain an as-
sociated "meaning" by the following definition.

D e f i n i t i o n (semantics of propositional logic)

The elements of the set {0, 1} are called truth values. An assignment is a
function .A �9 D ~ {0, 1}, where D is any subset of the atomic formulas.
Given an assignment .A, we extend it to a function A' " E --* {0, 1}, where
E 2) D is the set of formulas that can be built up using only the atomic
formulas from D.

1. For every atomic formula Ai E D, .A'(Ai) - .A(Ai).

1, if A ' (F) - 1 and A ' (G) - 1
2. ~4'((F A G)) - 0, otherwise

1, i f A ' (F) - 1 or A ' (G) - 1
3. , 4 ' ((F V G)) - 0, otherwise

1, i f A ' (F) - 0
4 . . A ' (- , F) - O, otherwise

6 C H A P T E R 1. P R O P O S I T I O N A L L O G I C

Since ,4' is an extension of ,4 (A and ,4' agree on D), from now on, we
drop the distinction between ,4 and ,4' and just write ,4. (The reason for
this temporary distinction was to be able to define .4.' formally.)

E x a m p l e : Let ~4(A) - 1, ~t(B) - 1 and ~t(C) - 0 . Then we obtain:

.A(~((A A B) V C)) - O,

_{0,
1,

__ { 0,
1,

__ { 0,
1,

= { 0,
1,

= 0

if .A(((A A B) V C)) - 0
otherwise

if ~ (((A A B) V C)) - 1
otherwise

if ~ ((A A B)) -- 1 or .A.(C) - 1

otherwise

if A((A A B)) -- 1 (because A(C) - 0)
otherwise

if A (A) - 1 and , 4 (B) - 1
otherwise

The (semantic) effect of the "operators" A, V,
following tables.

-~ can be described by the

.A(F) ,4(G)
0 0
0 1
1 0
1 1

,4((F ^ G))

,4(F) t(C) v O))

,4 (F) .A(-~F)

1.1. FO UNDATIONS 7

Using these tables, it is easy to determine the truth value of a formula F,
once an assignment of the variables occurring in F is given. As an example,
we consider again the formula F - -~((A A B) V C), and we represent the
way F is built up by its subformulas as a tree:

The truth value of F is obtainable by marking all leaves of this tree with the
truth values given by the assignment ,4, and then determining the values of
the inner nodes according to the above tables. The mark at the root gives
the truth value of F under the given assignment A.

0

8 CHAPTER 1. PROPOSITIONAL LOGIC

Exercise 2: Find a formula F containing the three atomic formulas A, B,
and C with the following property: For every assignment .A.: {A, B, C} ---,
{0, 1}, changing any of the values .A.(A), ~t(B), .A(C) also changes .#t(F).

From the definition of M(F) it can be seen that the symbol "A" is
intended to model the spoken word "and", and similarly, "v" models "or",
and "-." models "not". If we add the symbols "--," and "~-," (which we
introduced as syntactical abbreviations), then "--," stands for "implies" or
"if . . . then", and " ~ " stands for "if and only if".

To make the evaluation easier of formulas which contain the (abbrevi-
ation) symbols --, or ~-,, we introduce tables for these symbols as above.

0 0
0 1
1 0
1 1

.A((F --. G)) .A(F) .A(G)
1 0 0
1 0 1
0 1 0
1 1 1

G))

R e m a r k (induction on the formula structure)

The definition of formulas is an inductive definition: First, the simplest
formulas are defined (the atomic formulas), then it is shown how more
complicated formulas can be built up from simpler ones. The definition of
,4(F) is also by induction on the formula structure. This induction principle
can also be used in proofs: If some statement 8 is to be proved for every

formula F, then it suffices to perform the following two steps.

1. (Induction Base) Show that S holds for every atomic formula Ai.

2. (InducZion SZep) Show under the (induction) hypothesis that S holds
for (arbitrary, but fixed) formulas F and G, it follows that S also
hom (F ̂ C), and (F V C).

1.1. FOUNDATIONS 9

D e f i n i t i o n (suitable assignment, model, satisfiable, valid)

Let F be a formula and let .A be an assignment, i.e. a mapping from a
subset of {A1,A2, . . . } to {0, 1}. If .A is defined for every atomic formula
Ai occurring in F, then A is called suitable for F.

If .A is suitable for F, and if A(F) = 1, then we write .A ~ F. In this case
we say F holds under the assignment ,4, or .A is a model for F. Otherwise
we write .A ~ F , and say: under the assignment .A, F does not hold, or .A
is not a model for F.

A formula F is satisfiable if F has at least one model, otherwise F is called
unsatisfiable or contradictory. Similary, a set M of formulas is satisfiable
if there exists an assignment which is a model for every formula F in M.
(Note that this implies that this assignment is suitable for every formula in
M).
A formula F is called valid (or a tautology) if every suitable assignment for
F is a model for F. In this case we write ~ F, and otherwise ~ F.

T h e o r e m

A formula F is a tautology if and only if -~F is unsatisfiable.

P r o o f :

F is a tautology iff

iff

iff

iff

every suitable assignment for F is a model for F

every suitable assignment for F (hence also for

--,F) is not a model for --,F

--F does not have a model

--F is unsatisfiable.

The step from F to - ,F (or vice versa) can be visualized by the following
"mirror principle":

10 CHAPTER 1. PROPOSITIONAL LOGIC

I
I

all formulas in propositional logic

valid
formulas

~G

satisfiable,
but non-valid

formulas

I
F I -~F

I
I

unsatis-
fiable

formulas

G

Application of the negation symbol means a reflection at the broken line.
Hence a valid formula becomes an unsatisfiable formula (and vice versa),
and a formula being satisfiable, but non-valid, again becomes a formula of
this type.

Exe rc i se 3: A formula G is called a consequence of a set of formulas
{Fx, F2 , . . . ,Fk} if for every assignment .A which is suitable for each of
F1, F2, �9 �9 Fk and G, it follows that whenever ,4 is a model for $'1, F2, �9 �9 Fk,
then it is also a model for G.

Show that the following assertions are equivalent:

1. G is a consequence of {$'1, F 2 , . . . , Fk}.

2. ((]k~=l Fi) ~ G) is a tautology.

3. ((A~=x Fi) A--G) is unsatisfiable.

Exerc i se 4: What is wrong with the following argument?

"If I run the 100 meter race faster than 10.0 seconds, I will be admitted to
the Olympic games. Since I am not running the 100 meter race faster than
10.0 seconds, I will not be admitted to the Olympic games."

The truth value of a formula obviously depends only on the truth assign-
ments to the atomic formulas which occur in the formula. More formally, if

1.1. F O U N D A T I O N S 11

two suitable assignments ,4 and ,4' for F agree on all the atomic formulas
which occur in F, then A (F) - ,4 ' (F) . (A formal proof of this fact would
be by induction on the formula structure of F) .

The conclusion we can draw is, for determining whether a given formula
F is satisfiable or valid, it suffices to test finitely many different assignments
for the atomic formulas occuring in F. If F contains the atomic formulas
A i , . . . , A , , then there are exactly 2 n different assignments (because there
are 2" different functions from {A i , . . . , A , } to {0, 1}). This test can be
done systematically by ~ru~h-tables:

A i A2 "" A . - i A . F
Ai: 0 0 0 0 A i (F)
~2" 0 0 0 1 A2(F)

�9 ~ �9

�9 ~ .

A2-" 1 1 1 1 ~ 2 - (F)

It is clear now, that F is satisfiable if and only if the sequence of obtained
t ru th values for F (the column below F) contains a 1, and F is valid if and
only if the sequence consists only of l 's.

E x a m p l e : Let F -- (-~A --* (A --, B)).

It is more convenient to have an extra column for every subformula occuring
in F . Hence we obtain

A B -~A (A - , B)
0 0 1 1
0 1 1 1
1 0 0 0
1 1 0 1

F

The column below F consists only of l 's, therefore F is a tautology.

12 C H A P T E R 1. P R O P O S I T I O N A L L O G I C

R e m a r k : The truth-table method allows us to test formulas for satisfiabil-
ity or for validity in a systematic, i.e. algorithmic way. But note that the
expense of this algorithm is immense: For a formula containing n atomic
formulas, 2 n rows of the truth-table have to be evaluated. For a formula
with (only) 100 atomic formulas, the fastest existing computers would be
busy for thousands of years to determine whether the formula is, say, sat-
isfiable. (Find out how long 21~176 microseconds a r e - supposing that one
line of the truth-table can be constructed in 1 microsecond). This expo-
nential behavior regarding the running time of potential algorithms for the
satisfiability problem in propositional logic does not seem to be improv-
able (except for special cases, see Section 1.3). The satisfiability problem
is ~NP-complete'. (This notion cannot be explained here, see any book on
Complexity Theory).

Exerc i se 5: Show that a formula F of the form

k

c,)
i - -1

is satisfiable if and only if the set of formulas M - {G1,
able. Is this also true for formulas F of the form

k

- (V G,) ?
i = l

, Gk } is satisfi-

E x e r c i s e 6: How many different formulas F with the atomic formulas
A 1 , . . . , A , and with different truth value sequences (columns below F) do
there exist?

Exe rc i se 7: Give an example of a 3-element set M so that M is not
satisfiable, but every 2-element subset of M is satisfiable. Generalize your
example to n-element sets.

Exercise 8: Is the following infinite set of formulas satisfiable?

M - {A~ v A~,-~A~ v -~A3, A3 v A4,-~A4 v -~As,...}

1.1. F O U N D A T I O N S 13

Exerc i se 9: Construct truth-tables for each of the following formulas.

((A A B) A (-,B V C))

-,(-,A v -,(-,B v-,A))

(A ~ (B ~ C))

Exerc i se 10: Prove or give a counter example:

(a) If (F ---, G) is valid and F is valid, then G is valid.

(b) If (F --, G) is satisfiable and F is satisfiable, then G is satisfi-
able.

(c) If (F ~ G) is valid and F satisfiable, then G is satisfiable.

Exerc i se 11:

(a) Everybody having a musical ear is able to sing properly.

(b) Nobody is a real musician if he cannot electrify his audience.

(c) Nobody who does not have a musical ear can electrify his audi-
ence.

(d) Nobody, except a real musician, can compose a symphony.

Question: Which properties does a person have who has composed a sym-
phony?

Formalize these assertions, and use truth-tables!

Exerc i se 12: Assume (F --4 G) is a tautology such that F and G do not
share a common atomic formula. Show that either F is unsatisfiable or
that G is a tautology (or both).

Show that the assumption about not sharing atomic formulas is necessary.

14 CHAPTER 1. PROPOSITIONAL LOGIC

Exerc i se 13: (Craig's interpolation theorem)

Let ~ (F --+ G) and let F and G have at least one atomic formula in
common. Prove that there exists a formula H which is only built up from
atomic formulas occurring in both F and G such that ~ (F --+ H) and
~ (H --+ G).

Hint: Use induction on the number of atomic formulas that occur in F,
but not in G. Alternatively, construct a truth-table for H.

1.2 Equiva lence and Nor mal Forms

From the way we assign truth values to formulas, we know that (F V G)
and (G V F) "mean the same thing" - but syntactically the two formulas
are different objects. We express this semantic equality or equivalence with
the following definition.

Definit ion

Two formulas F and G are (semantically) equivalent if for every assignment
A that is suitable for both F and G, A(F) = A(G). Symbolically we denote
this by F = G.

R e m a r k : Formulas containing different sets of atomic formulas can be
equivalent (for example, tautologies).

T h e o r e m (substitution theorem)

Let F and G be equivalent formulas. Let H be a formula with an occurrence
of F as subformula. Then H is equivalent to H' where H' is a formula
obtained from H by substituting an occurrence of subformula F by G.

P r o o f (by induction on the formula structure of H):

Induction Base: If H is an atomic formula with an occurrence of F as
subformula, then H = F. Therefore, H' - G which is equivalent to H.

Induction Step: Let H be a non-atomic formula. In the case that the
subformula F of H is H itself, the same argument as in the induction base
applies. So suppose that F -7(: H.

1.2. EQUIVALENCE AND NORMAL FORMS 15

Case 1: H has the form --,H1.
The formula F is a subformula of H1. Therefore, by induction hypothesis,
H1 is equivalent to HI where HI is obtained from HI by substituting F by
G. Thus we have H' - - - ,HI . By the (semantic) definition of "--," it follows
that H and H' are equivalent.

Case 2: H has the form (H1 V H2).
Then the occurrence of F in H is either in H1 or in H2. We assume the
former case in the following (the latter case is analogous). Then again, by
induction hypothesis, Hx is equivalent to HI where HI is obtained from
HI by substituting F by G. Using the semantic definition of "V" it is clear
that H - (H ~ V H 2) - H ~.

Case 3: H has the form (Hx A H2).
This case is proved analogous to Case 2. �9

Exercise 14: Let F - G. Show: if F ' and G' are obtained from F
respectively G by substituting all occurrences of V by A (and vice versa)
then F ' = G'.

T h e o r e m

For all formulas F, G, and H, the following equivalences hold.

(F A F) _ F
(F V F) - F (Idempotency)

(F A G) -- (G A F)
(F V G) - (G V F) (Commutativity)

((F A G) A H) - (F A (G A H))
((F V G) V H) - (F V (G V H)) (Associativity)

(F A (F V G)) - r
(F V (F A G)) - r (Absorption)

(F^(Gv H))
(FV(GAH))

- ((F A G) V (F A H))
-- ((F V G) A (F V H)) (Distributivity)

-',-,F - F (Double Negation)

16 CHAPTER 1. PROPOSITIONAL LOGIC

-~(F ̂ G)
-~(F v G)

(Fv G)
(F A G)

(Fv G)
(F A G)

- (-~F v-~G)
---- (-~F A-~G) (deMorgan's Laws)

= F, if F is a tautology
- G, if F is a tautology

~_ G, if F is unsatisfiable
= F, if F is unsatisfiable

(Tautology Laws)

(Unsatisfiability Laws)

Proof." All equivalences can be shown easily using the semantic definition
of propositional logic. Also, we can verify them using truth tables. As an
example we show this for the first absorption law.

~ (F) ,~(C)
0 0
0 1
1 0
1 1

~((F v G)) ~ ((F ^ (F v G)))

The first column and the fourth column coincide. Therefore, it follows

(FA(FVG))- F.

Example: Using the above equivalences and the substitution theorem (ST)
we can prove that

((A V (B V C)) ^ (C V ~A)) = ((B ^ ~A) V C)

because we have

((A v (B v C)) ^ (C v -~A))
= (((A v B) v C) ^ (C v ~A))

= ((C v (A v B)) ^ (C v ~A))

- (C v ((A v B) ^ ~A))

- (C v (~A ^ (A v B))

= (C V ((~ A A A) V (~ A A B))

= (C V (~ A A B))

=_ (C V (B A~A))

- ((B ^-~A) v C)

(Associativity and ST)

(Commutativity and ST)

(Distributivity)

(Commutativity und ST)

(Distributivity and ST)

(Unsatisfiability Law and ST)

(Commutativity and ST)

(Commutativity)

1.2. EQUIVALENCE AND NORMAL FORMS 17

R e m a r k : The associativity law gives us the justification for a certain free-
dom in writing down formulas. For example, the notation

F - - A A B A C A D

refers to an arbitrary formula from the following list.

(((A A B) A C) A D)

((AAB) A(CAD))

((A A (B A C)) A D)

(A A ((B A C) A D))

(A A (B A (C A D)))

Since all these formulas are equivalent to each other, from the semantic
viewpoint it does not matter which of the formulas is referred to.

Exerc i se 15: Show that for every formula F there is an equivalent formula
G which contains only the operators -~ and ---,. Show that there exists a
formula having no equivalent one containing only the operators v, A and
- - - 4 .

Exerc i se 16: Show (by induction) the following generalizations of deMor-
gan'8 law and of the distributivity laws.

n n

i--1 i = l
n n

--,(A ~',) = (V-,~',)
i = l i = l

n ~ n

((V F,)^ (V ~,)) - (V (V (F,,, a~)))
i = l j = l /=1 j = l

Etlt n ~ n

r162 ~,)v cA G,)) - cAcA (~, v c~)))
i = l j = l i = l j = l

Exerc i se 17: Using the equivalences of the theorem, show that the formula
((A v -~(B A A)) A (C V (D A C))) is equivalent to (C V D).

18 CHAPTER 1. PROPOSITIONAL LOGIC

E x e r c i s e 18: Formalize the following statements as formulas, and then
show that they are equivalent.

(a) "If the child has temperature or has a bad cough and we reach
the doctor, then we call him."

(b) "If the child has temperature, then we call the doctor provided
we reach him, and, if we reach the doctor then we call him, if
the child has a bad cough.

In the following we show that every f o r m u l a - whether it is built up in
a complicated way or not - c a n be transformed in an equivalent one which
has a certain normal form. Even more, the above equivalences and the
substi tution theorem suffice for proving this.

D e f i n i t i o n (normal forms)

A literal is an atomic formula or the negation of an atomic formula. (In
the former case the literal is called positive and negative in the latter.)

A formula F is in conjunctive normal form (C N F) if it is a conjunction of
disjunctions of literals, i.e.

n rni

F - (A (V L,,j)),
i = l j = l

where Lid 6 {A1, A2,. . .} U {'~A1,-~A2,...}

A formula F is in disjunctive normal form (D N F) if it is a disjunction of
conjunctions of literals, i.e.

n ~'ni

F - (V (A L,,j)),
i = l j = l

where Lid 6 {A1, A2, . . .} U {-~A1,-~A2,...}

1.2. E Q U I V A L E N C E A N D N O R M A L F O R M S 19

T h e o r e m

For every formula F there is an equivalent formula /71 in C N F and an
equivalent formula F2 in D NF.

P r o o f (by induction on the formula structure of F):

Induction Base: If F is an atomic formula, then F is already in C N F as
well as in D NF .

Induction Step: We distinguish between 3 cases.

Case 1: F has the form F = -~G.
Then, by induction hypothesis, there are formulas G1 in C N F and G2 in
D N F that are equivalent to G. Let

n m i

G,- (A (V L,,j)).
i : 1 j = l

Application of deMorgan's law to -~G1 (in the generalized form, see Exercise
16) yields

F - (V - ~ (L,,~)),
i--1 j - - 1

and finally,
n mi

F- (V(A -~L,,i))
i = 1 j : l

which, by the double negation law, becomes

n r n i

F = (V (A L,,~))
i--1 j : l

Ak
where L i d - ~Ak

if Li,j - -~Ak

if Lid -- Ak .

Therefore, we have obtained a formula in D N F equivalent to F . Analo-
gously one can obtain from G~ a formula in C N F equivalent to F.

Case 2: F has the form F = (G V H).
By induction hypothesis, there are equivalent formulas to G and to H in
D N F and in C N F . To obtain a formula in D N F equivalent to F, we simply
combine the D N F formulas for G and H by v (and then use associativity.)

20 CHAPTER 1. PROPOSITIONAL LOGIC

To obtain a formula in C N F equivalent to F, we first choose formulas
Gi and Hx in C N F equivalent to G and H. Let

e l -

H 1 -

n

(A c:)
i --1

k

(A "1)
I--1

where G~ and HI are disjunctions of literals. Using the generalized distribu-
tivity law (Exercise 16), we obtain

n k

F = (A (A (G: v Hf)))
i = 1 1=1

Using associativity, the get the form

n .k

F-(Ar')
i = l

where the /7/' are disjunctions of literals. Possible double occurrences of
literals within a disjunction, or double occurrences of disjunctions can be
eliminated using the idempotency laws. Also, if some of the disjunctions are
tautologies (because they contain a literal together with its complement)
then these disjunctions can be eliminated by the tautology law. This ulti-
mately gives a formula in C N F .

Case 3: F has the form F = (G A H)
This case is analogous to Case 2. �9

The induction proof of the previous theorem hides a recursive algorithm
to produce equivalent D N F and C N F formulas for a given formula. A
more direct method to transform a formula into equivalent, say, C N F is
the following.

Given: a formula F.

1. Substitute in F every occurrence of a subformula of the
form

-~-~G by G ,

--,(G A H) by (-~G V --,H) ,

-~(G V H) by (-~GA-~H),

until no such subformulas occur.

1.2. EQUIVALENCE AND NORMAL FORMS 21

2. Substitute in F each occurrence of a subformula of the
form

(F V (G A H)) by

((F A G) V H) by

((FVG) A (F V H)) ,

((F V H) A (G V H) ,

until no such subformulas occur.

The resulting formula is in C N F (it still might contain superfluous, but
permissible occurrences of tautologies).

If a truth-table of a formula F is given or has been constructed, then there
is another method to produce an equivalent formula in D N F or C N F .

To obtain an equivalent formula in D N F proceed as follows. Every line
of the truth-table with the truth value 1 gives rise to a conjunction. The
literals occurring in this conjunction are determined as follows: If for the
assignment .A that corresponds to this line we have .A(Ai) = 1 then Ai is
inserted as literal, otherwise -,Ai.

To obtain a formula in C N F equivalent to the given formula F with its
truth-table, one has to interchange the roles of 0 and 1, and of disjunction
and conjunction in the above instruction.

E x a m p l e : A formula F is given with the following truth-table.

A B C F
0 0 1
0 1 0
1 0 0
1 1 0
0 0 1
0 1 1
1 0 0
1 1 0

22 C H A P T E R 1. P R O P O S I T I O N A L LOGIC

Then we obtain immediately an equivalent formula in D N F

(-~A A ~B A -~C) v (A ^ ~B ^ -~c) v (A A -~B A C),

and also a formula in C N F

(A v B v -~c) A (A v -~B v C)A
(.,4 v ~B v --,c) A (--,A v ~B v c) A (--,.,4 v ~B v ~ c) .

Exerc i se 19: Given is the following formula

((-~A --, B) v ((n ^ - , c) .-, B)) .

Using any of the above methods, construct an equivalent formula in D N F
and an equivalent one in C N F .

Observe that the formulas in D N F or C N F that are produced by the
above methods are not necessarily the shortest possible ones. This problem,
namely producing equivalent formulas in D N F or C N F that are as short
as possible is interesting in digital circuit design. The shorter the formula,
the fewer gates are needed for the circuit which realizes this formula. These
issues are not the theme of this presentation.

Observe also that all the algorithms presented for producing D N F or
C N F might produce an exponential "blow up" in the formula size. This
blow up is caused by the applications of the distributive law. Each ap-
plication roughly doubles the formula size. A formula with a short D N F
presentation in general has a long C N F presentation and vice versa.

Exerc i se 20: Show that for every formula F there exists a formula G
in C N F which can be constructed efficiently from F and has at most 3
literals per conjunction such that F is satisfiable if and only if G is satisfi-
able. (Note: it is not equivalence between F and G that is claimed here.)
Further, the size of G is linear in the size of F.

Hint: The atomic formulas of G consist of those of F plus additional
atomic formulas. These additional atomic formulas correspond to the inner
nodes of the "structure tree" of F.

1.3. HORN FORMULAS 23

In this situation, the formula G would contain a subformula (transformed
into C N F) of the form

�9 . . A (A (B A c)) A . . .

The reader i8 invited to complete the details.

1.3 H o r n F o r m u l a s

An important special case of C N F formulas which often occurs in practical
applications are the Horn formulas (named after the logician Alfred Horn.)

Definition (Horn formula)

A formula F in C N F is a Horn formula if every disjunction in F contains
at most one positive literal.

Example:

F - (A V -~B) A (~C V -~A V D) A (-~A V -~B) A D A -~E

G - (A V ~B) A (C V ~A V D).

F is a Horn formula and G is not.

Horn formulas can be (equivalently) rewritten in a more intuitive way,
namely as implications. (We call this the procedural reading of Horn for-
mulas.) In the above example, F can be rewritten as

F = (B ~ A) A (C AA ~ D) A (A A B ~ 0) A (1 ---. D) A (E- - , 0).

24 CHAPTER 1. PROPOSITIONAL LOGIC

Here, 0 stands for an arbitrary unsatisfiable formula and 1 for an arbitrary
tautology. It is easy to check that this equivalence really holds. The general
rule is this: write the negative literals to the left of the implication sign (and
a 1 if there is no negative literal), and write the positive literal (if any) at
the right of the implication sign (and a 0 if there is no positive literal). Such
an implication says whenever the premises are satisfied, then the conclusion
must be satisfied (and if the conclusion is 0, there is a contradiction). This
informal argument will be made more formal in the following theorem.

A general theme of this book is the search for efficient algorithms which
decide satisfiability (or validity) of formulas. Indeed, it is enough to have a
test for unsatisfiability because a formula is valid if and only if its negation
is unsatisfiable (cf. Exercise 3).

Using truth-tables, it is always possible to find out whether a formula
is satisfiable or unsatisfiable. On the other hand, we have observed already
that the expense of doing this is enormous: an algorithm based on con-
structing the full truth-table of a formula necessarily runs in exponential
time.

In contrast, for Horn formulas there exists an efficient test for satisfia-
bility which works as follows.

Instance: a Horn formula F

1. Mark every occurrence of an atomic formula A in F if there is a
subformula of the form (1 --~ A) in F.

2. whi le there is a subformula G in F of the form (A1 A . . - A A,~
--, B) or of the form (A1 A . . . A An ~ 0), n > 1, where
A 1 , . . . , A~ are already marked (and B is not yet marked)
do

if G is of the first form

t h e n mark every occurrence of B

else output "unsatisfiable" and ha l t ;

3. Output "satisfiable" and halt. (The satisfying assignment is given by
the marking: .A(Ai) = 1 if and only if Ai has a mark.)

1.3. H O R N F O R M U L A S 25

T h e o r e m

The above marking algorithm is correct (for Horn formulas as input), and
stops always after at most n many applications of the whi le loop (n -
number of atomic formulas in F.)

Proof.- It is clear that the algorithm cannot mark more atomic formulas
than there exist. Therefore, the output "satisfiable" or "unsatisfiable" is
reached after at most n applications of the whi le loop.

Regarding the correctness of the algorithm, we observe that any model
.A for the input formula f (if there is any) must satisfy .A.(Ai) = 1, for all
atomic formulas Ai that are marked during application of the algorithm.
This is immediate for the marked atomic formulas in step 1 of the algorithm
because a C N F formula F obtains the truth value 1 only if every disjunc-
tion in F gets the value 1. If such a disjunction, as in step 1, has the form
(1 --4 A), then A necessarily has to receive the assignment 1. Therefore,
in step 2, it is necessary to mark (i.e. to assign 1 to) an atomic formula
B provided (At A . - . A An --* B) occurs in F and A1 , . . .An are already
marked. Also, the decision for "unsatisfiable" is correct in the case that
(At A . . - A An --4 0) occurs in F and A t , . . . A n are already marked.

If the marking process successfully ends and step 3 is reached, then the
formula F is satisfiable and the marking provides a model for F. To see
this, let G be an arbitrary disjunction in F. If G is an atomic formula, then
.A(G) - 1 is already guaranteed by step 1 of the algorithm. If G has the
form (A1A. . .AA, ---. B) (i.e., G = (~A, V.. .V-~A, V B)), then either every
Ai is marked by 1, and by step 2 of the algorithm, also B is marked, or for
at least one of the A~, .A(A~) - 0. In both cases we get .A(G) - 1. If G has
the form (A1 A . - . A An ---* 0) (i.e., G = (~A1 V . - . V "~An)), then, by the
assumption that step 3 was reached, for at least one of the Ai, .A(Ai) = O.
Therefore, also in this case, ~t(G) = 1. []

Observe that the proof shows that the model .A obtained by the marking is
actually the smallest model for the formula F. That is, for every model .A t
and all atomic formulas B occuring in F, .A(B) < .At(B). (Here, the order
0 < 1 is assumed.)

Another consequence of the proof is that every Horn formula is satisfi-
able if it does not contain a subformula of the form (A1 A - . . A An ---* 0).
Exactly these subformulas possibly cause the above algorithm to halt with
the output "unsatisfiable'. Further, a Horn formula is satisfiable if it does
not contain a subformula of the form (1 ---, A). In this case the whi le loop
in step 2 will not be entered, and the control immediately reaches step 3.

26 C H A P T E R 1. P R O P O S I T I O N A L L O G I C

Exerc i se 21: Apply the above marking algorithm to the Horn formula

F = (-~A V -~B V -~D) ^ -~E ^ (-~C V A) ^ C ^ B ^ (-~G V D) ^ G.

(Notice that a truth-table for this formula would have 26 = 64 lines.)

Exerc i se 22: Give an example of a formula which does not have an equiv-
alent Horn formula. Why is this so?

Exerc i se 23: Suppose we have the apparatuses available to perform the
following chemical reactions.

M g O + H 2 ---* M g + H 2 0

C + O 2 --* CO2

H 2 0 + C O 2 ---, H2CO3

Further, our lab has the following basic materials available: MgO, H2, 02
and C. Prove (by an appropriate application of the Horn formula algorithm)
that under these circumstances it is possible to produce H2CO3.

1.4 T h e C o m p a c t n e s s T h e o r e m

In this section an important theorem is proved. Perhaps, the reader will
not realize its importance at this time. But in Chapter 2 this theorem will
play an important role.

Recall that a set M of formulas is, by definition, satisfiable if there is
an assignment A such that for every F E M, .A(F) = 1. We call such an
assignment a model for M.

C o m p a c t n e s s T h e o r e m

A set M of formulas is satisfiable if and only if every finite subset of M is
satisfiable.

Proof: Every model for M is also a model for every subset of M, in
particular, for every finite subset of M. Therefore the direction from right
to left is immediate.

1.4. THE COMPACTNESS THEOREM 27

Conversely, suppose that every finite subset of M is satisfiable, i.e. has
a model. Our task is to construct one uniform model for M from this
variety of models. For every n _> 1 let Mn be the set of formulas in M
that contains only the atomic formulas A 1 , . . . , An. Although M,, might
be an infinite set, it contains at most 22~ many formulas with different
truth tables. (Note that there are exactly 22~ many different t ruth tables
with the atomic formulas A1, . . . ,An) . Therefore, there is a collection of
formulas { F 1 , . . . , Fk } C Mn, k _< 22", such that for every F E Mn, F - Fi
for some i < k. Hence, every model for { F 1 , . . . , Fk} is also a model for
Mn. By assumption, { F 1 , . . . , Fk} possesses a model because it is a finite
subset of M. Call this model ~ . We further note that ~ is also a model
for M 1 , . . . , Mn-x because M1 C . . . C Mn-1 C Mn.

We construct the desired model .4 for M in stages, such that we start
with , 4 - 0 in stage 0 and we declare in stage n how ,4 is defined on An.
Furthermore, in the construction appears an index set I which is initially
set to IN, the set of all natural numbers, and modified at each stage. We
find it convenient to use in some places the set theoretic notion for function
and write (A, , 1) E ,4 instead .A(An) - 1. The stage construction follows.

S t a g e 0: ~ := @ ;
/ : = I N ;

S t a g e n > 0" if there are infinitely many indices i E I with
. A { (A ,) - 1 t h e n

b e g i n
.4 : = x u { (A . , ;
I := I - { i [J t { (A ,) # 1}

e n d
else

b e g i n
.,4 :-- .A U {(An, 0)} ;
I := I - {iIA~(A.) # 0}

end .

Since in each stage n the assignment ,4 is extended by (An, 0) or by (An, 1),
but not both, ,4 is a well-defined function with domain {A1, A2, A3, . . .} and
range {0, I}.

We claim that ,4 is a model for M. Let F be an arbitrary formula in M.
F contains only finitely many atomic formulas, say, A1, . . .Az . Therefore, F
is an element of Mz C Mt+l C . . . and each of the assignments .A~, .A~+I,...
is a model for F . It can be seen that the above construction has the property
that in each stage, I is "thinned out" because indices are canceled from I,

28 C H A P T E R 1. P R O P O S I T I O N A L L O G I C

but I will never become finite. Therefore, in stage l infinitely many indices
remain in I, also such indices i with i > I. All these remaining assignments
A~ agree with each other and with ,4 on {A1, . . . ,Az}. Hence, ~t(F) - 1.

m

Observe that the above proof is non-constructive. That is, the ezistence of
the model ,4 is shown, but the test in the if statement cannot be checked in a
finite amount of time (cf. Section 2.3 about decidability questions.) Rather,
it is a "mental construction"" either the if condition or the else condition
is satisfied, and the construction is supposed to proceed correspondingly,
but we are not able to implement this process algorithmically.

Formulated in different terms, the compactness theorem states that a
set of formulas M is unsa~isfiable if and only if there exists a f ini te subset
of M that is unsatisfiable. In this form the compactness theorem will be
used in Chapter 2. To give an understanding of this application in Chapter
2, suppose the set M can be enumerated by an algorithmic process

M - {F~, F2, F3, . . .},

that is, there is an algorithm which, on input n, outputs F,, in finite
time. To determine whether M is unsatisfiable, we generate successively
/;'1,/'2, F 3 , . . . and test each time whether the finite set of formulas gener-
ated so far is unsatisfiable. If so, we know that M is unsatisfiable. On the
other hand, there is no way to confirm satisfiability in a similar manner.

E x e r c i s e 24" Let M be an infinite set of formulas so that every finite
subset of M is satisfiable. Suppose, no formula in M contains the atomic
formula A723. Therefore suppose, that none of the assignments .An in the
above construction is defined on A723. Find the value of ,4(A723) given by
the above construction.

E x e r c i s e 25" Prove that M - { / '1 , / ' 2 , / ' 3 , . . . } is satisfiable if and only if
for infinitely many n, (Ai=l F~) is satisfiable.

E x e r c i s e 26: A set of formulas M0 is an axiom sys tem for a set of formulas
M if

{,4[,4 is model for M0 } = {,41,4 is model for M}.

1.5. R E S O L U T I O N 29

M is called finitely aziomatizable if M has a finite axiom system. Suppose,
{Fi, F2, F3 , . . . } is an axiom system for a set M where for all n > 1,

(F.+x F.) V= (F. --, F,+x).

Show that M is not finitely axiomatizable.

E x e r c i s e 27: Let L be an arbitrary infinite set of natural numbers, pre-
sented in binary notat ion (e.g., the set of prime numbers: L = {10, 11,101,
111, 1011, . . . }) .) Prove there is an infinite sequence of different binary
numbers wi, w2, w3 , . . , such that wi is prefix of w~+i and also prefix of
some element of L.

1.5 R e s o l u t i o n

Resolution is a simple syntactic transformation applied to formulas. From
two given formulas in a resolution step (provided resolution is applicable to
the formulas), a third formula is generated. This new formula can then be
used in further resolution steps, and so on.

A collection of such "mechanical" transformation rules we call a calculus.
Mostly, a calculus (like resolution) has an easy algorithmic description,
therefore a calculus is particularly qualified for computer implementation.
In the case of resolution there is just one rule which is applied over and
over again until a certain "goal formula" is obtained.

The definition of a calculus is sensible only if its correctness and its
completeness can be established (both with respect to the particular task
for which the calculus is designed). To be more precise in the case of the
resolution calculus, the task is to prove unsatisfiability of a given formula.
(Remember that many other questions about formulas can be reduced to
unsatisfiability, cf. Exercise 3.)

In this case, correctness means that every formula for which the reso-
lution calculus claims unsatisfiability indeed is unsatisfiable. Completeness
means that for every unsatisfiable formula there is a way to prove this by
means of the resolution calculus.

30 CHAPTER 1. PROPOSITIONAL LOGIC

A general precondition for the application of resolution to a formula is
that the formula (or set of formulas) is in C N F . That is, if necessary, the
formula has to be transformed into an equivalent C N F formula (see also
Exercise 20.) Let the formula F be

F - (L, , , V . - . V L , , , ,) A . - . A (Lk,, V . . . V Lk,,k)

where the Li,j are literals, i.e. Li,j E {A1 ,A2 , " "} U {--A~,--A2,-. "}. For
the presentation of resolution it is advantageous to represent formulas in
C N F as sets of so-called clauses where a clause is a set of literals"

F = {{LI ,1 , . . . ,L , , ,~ , } , . . . , {Lk ,1 , . . . ,Lk , , , , } }

In this example, {LI ,1 , . . . , L I , , , } is a clause. Hence a clause corresponds
to a disjunction. A comma separating two literals within a clause can be
thought of V, whereas a comma that separates two clauses corresponds to

aA .

The elements in a set do not have an order or priority and multiple
occurrences of an element "melt" together into a single element. There-
fore, simplifications s temming from associativity, commutat ivi ty or idem-
potency are "automatically" provided by the set notation. The follow-
ing equivalent C N F formulas all have the same set presentation, namely
{{A3},{A1,--,A2}}:

((A1 V -A2) A (A3 A A3))

(A 3 A (~ A 2 V A 1))

(A3 A ((~A2 V ~A2) V A1))

etc.

To keep notation simple, in the following we use the same letter F to
represent a C N F formula, and also its corresponding clause representation.
Of course, the relationship between clause sets and formulas is not one
to one, as the above example shows. Furthermore, we apply notions like
equivalence and satisfiability also to clause sets.

D e f i n i t i o n (resolvent)

Let C1,6'2 and R be clauses. Then R is called a vesolvent of C1 and C2 if
there is a literal L E Ci such that L E C2 and R has the form

R - (C1 - {L})U (C2 - {L}).

1.5. RESOLUTION 31

Here, L is defined as

-- { ~Ai if L - A i ,
L - - A i if L - --,Ai .

Graphically we denote this situation by the following diagram.

c%;2
R

The above definition also includes the case that R is the empty set (if
C1 - {L} and (72 - {L} for some literal L.) This empty clause is denoted
by the special symbol [::l. By definition, the empty clause [] is unsatisfiable.
Therefore, a clause set which contains [] as an element is unsatisfiable.

The following are some examples for resolutions.

{A3, - ~ ~ - ~ A 1 }

{A3, --,A4, A1} {A~.--,A1}

{Aa, -,A4, A4}

Exercise 28: Give the entire list of resolvents which can be generated from
the set of clauses

{{A,E, ~B}, {--,A,B,C}, {--,A,--,D,~E}, {A,D}}.

32 CHAPTER 1. PROPOSITIONAL LOGIC

Exercise 29: If R is a resolvent of two Horn clauses, prove that R is a
Horn clause, too.

Reso lu t i on L e m m a

Let F be a C N F formula, represented as set of clauses. Let R be a resolvent
of two clauses C1 and C2 in F. Then, F and F U {R} are equivalent.

Proof." Let .4 be an assignment that is suitable for F (and also for FU{R}).
If A ~ F U {R} then immediately, A ~ F. Conversely, suppose A ~ F,
that is, for all clauses C E F, A ~ C. Assume the resolvent R has the form
R - (C1 - {L})U (C2 - {L}) where Ca, C2 E F and L E C1, L E C2.

Case I: A ~ L.

Then, by .4 ~ C2 and ,4 ~ L, it follows .4 ~ ((72 - {L}), and therefore
XbR.

Case 2:.,4 ~ L.

Then, by ,4 ~ C1, it follows ,4 ~ (C1 - {i}), and therefore ,4 ~ R. �9

Def in i t ion

Let F be a set of clauses. Then Res(F) is defined as

Res(F) - F U { R] R is a resolvent of two clauses in F}.

Furthermore, define

Res~

Resn+l(F)

- F

- Res(Resr'(F)) f o r n > 0 .

and finally, let

n > 0

Exercise 30: For the following set of clauses,

F - {{A,-,B, C}, {B, C}, {--,A, C}, {B,--,C}, {--,C}}

1.5. RESOLUTION 33

determine Res '~ (F) for n - O, 1, 2.

E x e r c i s e 31: Prove that for every finite clause set F there is a k > 0 such
that

Resk(F)- Resk+i(F)- . . . - Res*(F).

Estimate k (in terms of, e.g., the number of clauses, the maximum size of
a clause, and and the number of different atomic formulas in F) .

E x e r c i s e 32: Let F be a set consisting of n clauses that contains the
atomic formulas Ai,A~,... ,An. What is the maximum size of Res*(F)?

Now we proceed to the proof of correctness and completeness of the reso-
lution calculus (with respect to unsatisfiability). In this context, resolution
is called refutation complete.

R e s o l u t i o n T h e o r e m (of propositional logic)

A clause set F is unsatisfiable if and only if o E Res*(F).

P r o o f : Using the compactness theorem, we may assume that F is finite,
otherwise we pick an unsatisfiable finite subset of F.

(Correctness) We need to show that [] E Res*(F) implies that F is
unsatisfiable. From the Resolution Lemma, we obtain

F - . . . - . . .

Since o is contained in Res*(E), it is contained in Resn+i(F) for some
n. The empty clause o can only be obtained from two clauses of the
form {L} and {L}. Therefore, {L}, {L} E Resn (F). Obviously there is no
assignment which can make all clauses in Resn(F) true, therefore, Res'~(F)
is unsatisfiable, and by the above equivalence, F is unsatisfiable.

(Completeness) Suppose that F is unsatisfiable. We show [] E Res*(E)
by induction on the number n of different atomic formulas in F.

Induction Base: If n - 0, then it must be that F - {o}, and therefore,
0 E Res*(F).

34 CHAPTER 1. PROPOSITIONAL LOGIC

Induction Step: Let n be arbitrary, but fixed. Suppose that for ev-
ery unsatisfiable set of clauses G containing at most the atomic formulas
A 1 , . . . , A n , [] E Res*(G). Let F be a clause set with the atomic formu-
las A1, . . . ,An, An+l. Without loss of generality we may assume that no
clause contains both An+l and -~An+l (Why?). From F we obtain two
new clause sets F0 and F1 as follows. F0 results from F by canceling ev-
ery occurrence of the positive literal An+x within a clause, and for every
occurrence of the negative literal -'An+l within a clause, the entire clause
is canceled. Analogously F1 is defined where the roles of An+l and --,An+i
are interchanged.

Note that F0 (F1) essentially results from F by fixing the assignment of
An+l to 0 (to 1, resp.) Therefore, both F0 and F1 are unsatisfiable. Assume
to the contrary that F0 has a satisfying assignment .A : {A~,. . . , An} ---+
{0, 1}. Then, A' is a satisfying assignment for F where

A(B) i f B E { A x , . . . , A n }
A'(B) - 0 if B - An+l.

This contradicts the unsatisfiability of F. Similarly it can be shown that
F1 is unsatisfiable.

Therefore, by induction hypothesis, [] E Res*(Fo) and o E Res*(F1).
This means there is a sequence of clauses C1, C2, . . . , Cm such that

C m ---- ["],
and for i = 1 , . . . , m, Ci E Fo or Ci is a resolvent of two clauses
Ca,Cb with a,b < i.

An analogous sequence CI, C~, . . . , C~ exists for F1. Some of the clauses Ci
were obtained from F by canceling the literal An+l. By restoring the orig-
inal clauses Ci U {An+l}, and carrying An+l along in the resolution steps,
we obtain from C1, C2, . . . , Cm a new "proof sequence" for F which wit-
nesses that {A,+~} E Res*(F). Similarly, restoring -~A,+~ in the sequence
C~, C~, . . . , C~ shows that {~A,+~} E Res*(F).

By a further resolution step,

{ A , ~ , , + 1 }

the empty clause can be derived, and therefore [] E Res*(F).

1.5. RESOLUTION 35

From the resolution theorem the following algorithm can be derived that
decides satisfiability for a given input formula in C N F (or clause set) F
(cf. Exercise 31).

Instance: a formula F in C N F

1. Form a clause set from F (and continue to call it F);

2. r e p e a t
G : - F;
F := Res(F);

u n t i l (o e F) or (f = G);

3. if [] E F t h e n "F is unsatisfiable"
else "F is satisfiable";

In some cases this algorithm can come up with a decision quite fast, but
there do exist examples for unsatisfiable formulas where exponentially many
resolvents have to be generated before the u n t i l condition is satisfied (cf.
Urquhart in the references).

In the following we want to distinguish between the clauses which are
generated by the algorithm and those clauses thereof which are really rele-
vant to derive the empty clause. (This might be significantly less clauses.)
Implicitly, we used the following definition already in the proof of the res-
olution theorem.

D e f i n i t i o n

A derivation (or proo]) of the empty clause from a clause set F is a sequence
C1, C2,.. . , Cm of clauses such that

Cm is the empty clause, and for every i - 1 , . . . , m, Ci either is
a clause in F or a resolvent of two clauses Ca, Cb with a, b < i.

Reformulating the resolution theorem, it should be clear that a clause set
F is unsatisfiable if and only if a derivation of the empty clause from F
exists. To prove that a clause set F is unsatisfiable it is therefore enough
to present a sequence of clauses according to the above defin~_tion. It is not
necessary to write down all the clauses in Res*(F).

36 CHAPTER 1. PROPOSITIONAL LOGIC

Example : Let F = {{A, B,- ,C}, {--,A}, {A ,B , C}, {A,--,B}}. F is unsat-
isfiable. This fact is proved by the following derivation C1 , . . . , C7 where

C1 - {A,B,-~C} (clause in F)
C2 = {A,B,C} (clause in F)
C3 - {A, B} (resolvent of e l , C2)
C4 - {A, -~B} (clause in F)
C5 - {A} (resolvent of C3, C4)
C6 - {--,A} (clause in F)
C7 - [3 (resolvent of C5, Cs)

This situation can be visualized by the resolution graph:

C1 C2

C3 C4

Such graphs need not necessarily be trees if the same clause is used in more
than one resolution step.

Exerc ise 33: Using resolution, show that A A B A C is a consequence of
the clause set

F = {{~A, B}, {~B, C}, {A, ~C}, {A, B, C}}.

Exercise 34: Using resolution, show that

F - (-~B A-~C A D) V (~B A ~D) V (C A D) V B

is a tautology.

1.5. RESOLUTION 37

E x e r c i s e 35: Show that the following restriction of the resolution calculus
is complete for the class of Horn. formulas (but not for the general case):
Derive a resolvent from two clauses C1, C2 only if one of these clauses is a
unit clause, i.e. it consists of only one literal.

This resolution restriction has the property that the resolvents become
shorter. Therefore, from the completeness of this restriction a similarly
efficient algorithm for Horn formulas can be derived as the one presented
in Section 1.3.

Hint: Show that the process of the marking algorithm for Horn for-
mulas from Section 1.3 can be simulated in a certain way by appropriate
applications of resolution steps with unit clauses.

Second Hint: This exercise will be solved in Section 2.6.

Exe rc i s e 36: Let F be a clause set with the atomic formulas A I , . . . , A ,
where each clause contains at most two literals (such clauses are called
Krom clauses). How large can Res*(F) be at most? (From this exercise it
follows that there is an efficient algorithm for determining satisfiability of
Krom formulas.)

Exe rc i s e 37: Develop an efficient implementation of the resolution calculus
which uses the following data structure: The example clauses

{A, ~B, C, D}, {A, B}, {-~A,-~B,-~C}, {-~B}

are represented by the following clause graph,

['~41 -2,BICID'[

! BI

38 CHAPTER 1. PROPOSITIONAL LOGIC

where an edge indicates a pair of complementary literals (and therefore
the possibility of producing a resolvent.) Each edge can give the cause
for a resolution step. In case a resolution step is performed, a new vertex
representing the resolvent is generated. The edge connections to this new
vertex can be read off from the parent vertices.

Furthermore, it is possible to cancel certain edges from the graph (and
the necessity to produce the corresponding resolvents) by certain locally
checkable conditions. For example, both edges between the second and
third clause can be canceled. Also, under certain conditions, vertices can
be canceled from the graph, and need not be considered. For example, the
first vertex can be canceled.

E x e r c i s e 38: Given is the following resolution graph where C1,... ,67 are
Horn clauses.

C1 C2 C3 C4

Show that this tree can be made linear, such that the clause C7 can be
obtained from C1, (72, (73, C4 in the following way

ell G2 C ~ i ,

!

1.5. RESOL UTION 39

where {il,i2,i3,i4} = {1,2,3,4} and C',C" are certain suitably chosen
Horn clauses.

Exerc i se 39: A clause is called positive (negative) if it contains only pos-
itive (negative) literals. Show that a clause set is satisfiable if it does not
contain a positive clause. (The same holds if it does not contain a negative
clause.)

Exerc i se 40: Show that the following restriction of resolution is complete"
A resolvent of two clauses C1,C2 is only produced if one of the parent
clauses is positive.

Hint" This exercise is solved in Section 2.6.

Exerc i se 41: Let F be an unsatisfiable clause set , and let G be a minimally
unsatisfiable subset of F. (That means that G is unsatisfiable, but every
proper subset of G is satisfiable.) Show that every derivation of the empty
clause from F consists of at least I G I - 1 many resolution steps where IGI
denotes the number of clauses in G.

R e m a r k : We have seen that in some special cases the resolution calculus
leads to an efficient algorithm to determine (un)satisfiablity (cf. Exercises
35,36). But in the case of arbitrary clause sets, it is possible to exhibit
unsatisfiable clause sets such that every derivation of the empty clause
consists of exponentially many resolution steps (cf. Urquhart). That is, the
expense of the resolution algorithm is comparable with the expense of the
truth-table method. Because of the "NP-completeness" of the satisfiability
problem, there does not seem to exist any significantly faster algorithm.

Another peculiarity is worth mentioning: Both satisfiability and unsat-
isfiablity of a given formula F can be expressed by an existential statement.
By definition, F is satisfiable if there exists a satisfying assignment for F.
On the other hand, F is unsatisfiable if there exists a resolution derivation
of the empty clause from F. As discussed above, there is a catch to this
apparent symmetry. Writing down a resolution proof can be much more
expensive than writing down a satisfying assignment. (This non-symmetry
is closely related with the "NP=?co-NP" problem.)

Chapter 2

P R E D I C A T E L O G I C

2.1 F o u n d a t i o n s

Predicate logic can be understood as an extension of propositional logic.
The additional new concepts include quantifiers, function symbols and pred-
icate symbols. These new notions allow us to describe assertions which
cannot be expressed with the available tools of propositional logic. For ex-
ample, up to this point it was not possible to express that certain "objects"
stand in certain relations, or that a property holds for all such objects,
or that some object with a certain property ezists. Here is a well known
example from calculus:

For all ~ > 0 there exists some no, such that for all n > no,

The main concepts here are the verbal constructs for all and exists, as well
as the use of functions (abs, f, -) and relations (>, >, <).

As in propositional logic, we start by formalizing the syntactic frame-
work in which we want to discuss formulas in predicate logic. But first we
need to define the syntax of the so-called terms, since terms occur as parts
of formulas in predicate logic.

D e f i n i t i o n (syntax of predicate logic)

A variable is of the form x~ where i - 1, 2, 3, A predicate symbol is of

41

42 CHAPTER 2. PREDICATE LOGIC

the form P~ and a function symbol of the form f~ where i = 1, 2, 3 , . . . and
k = 0, 1,2, Here, i is the distinguishabilily index and k is called the
arity. In the case of arity 0, we drop the parentheses, and just write pO or
fo. A function symbol of arity 0 will also be called a constant. Next, we
define terms by an inductive process as follows.

1. Each variable is a term.

2. If f is a function symbol with arity k, and if t l , . . . ,tk are terms, then
f (t l , . . . , t k) is a term.

Next, formulas (of predicate logic) are defined inductively as follows.

1. If P is a predicate symbol with arity k, and if t l , . . . ,tk are terms,
then P (t l , . . . , t k) is a formula.

2. For each formula F, -~F is a formula.

3. For all formulas F and G, (F A G) and (F V G) are formulas.

4. If x is a variable and F is a formula, then 3xF and VxF are formulas.

Atomic formulas are exactly those formulas built up according to rule 1. If
F is a formula, and F occurs as part of the the formula G, then F is called
a subformula of G.

All occurrences of a variable in a formula are distinguished into bound
and free occurrences. An occurrence of the variable x in the formula F
is bound if x occurs within a subformula of F of the form 3xG or VxG.
(Hence, the same variable x can occur both free and bound in a formula F,
see also Exercise 42).

A formula without occurrence of a free variable is called closed. The
symbols 3 and V are called quan$ifiers where 3 is the existenlial quanlifier
and V is the universal quanlifier. The matrix of a formula F, denoted
symbolically by F*, is obtained by canceling in F every occurrence of a
quantifier and the variable that follows the quantifier.

2.1. FOUNDATIONS 43

E x a m p l e : F : (3xlP~(xl, f~(x2)) V-~Vx2P~(x2, ff7(f ~ f~(x3)))) is a for-
mula. All the subformulas of F are:

F

P:(Xl, S~(x2))
~w~p:(~,/~(/o,/~(~)))
w~p2(~, :~(/o,/~ (~)))
P2(x2, f~(f~ fls (x3)))

All the terms that occur in F are:

Xl

X2

f~ (x2)

f~(ff, f~(~))
ff
:~(~)
X3

All occurences of x l in F are bound. The first occurence of x2 is free, all
others are bound. Further, xa occurs free in F . Hence, the formula F is
not closed. The term fo is an example for a constant. The matr ix of F is
the formula

F* : (P2(x l , f~(x2)) V -~P:(x2, f~(f4 ~ f~(x3))))

E x e r c i s e 42: Let Free(F) be the set of all variables that occur free in F .
Define Free(F) formally (by induction on the term and formula structure).

Again, we allow the same simplifying notations for formulas as in proposi-
tional logic. Additionally, we allow the following abbreviations.

44 CHAPTER 2. PREDICATE LOGIC

tt~ V, W~ X~ y~ Z

a, b, c

f ,g,h

P ,Q,R

always stand for variables.
always stand for constants.
stand for function symbols where the arity can
always be inferred from the context.
s tand for predicate symbols where the arity
can always be inferred from the context.

E x e r c i s e 43: List all subformulas and terms that occur in the formula

F = (Q(x) v (3xVy(P(f(x), z) A Q(a)) v VxR(x, z,g(x))))

Which subformulas are closed? Determine for each occurrence of a variable
if it is free or bound. What is the matr ix of F?

To interpret formulas of predicate logic (i.e. to give them a semantics, i.e.
a "meaning"), we need to associate functions to the function symbols and
predicates to the predicate symbols (in both cases, we also have to fix some
ground set on which the functions and predicates are defined). Furthermore,
variables that occur free in a formula need to be interpreted as elements
of the ground set. If this is done, the formula gets a "meaning", in this
case, a t ru th value. This intuitive explanation will be made formal in the
following definition.

D e f i n i t i o n (semantics of predicate logic)

A structure is a pair A = (UA, IA) where UA is an arbitrary, non-empty
set and is called the ground set or universe. Further, IA is a mapping tha t
maps

�9 each k-ary predicate symbol P to a k-ary predicate on UA (if IA is
defined on P) .

�9 each k-ary function symbol f to a k-ary function on UA (if IA is
defined on f) .

�9 each variable x to an element of UA (if I~ is defined on x).

2.1. F O U N D A T I O N S 45

In other words, the domain of / .4 is a subset of {P~, f~, xi l i - 1, 2, 3 , . . .
and k - 0, 1 ,2 , . . . } , and the range o f / . 4 is a subset of all predicates,
functions, and single elements of U t . In the following, we abbreviate the
notat ion and write p t instead of I t (P) , f t instead of I t (f) , and x t
instead of I t (x).

Let F be a formula and .A = (U t , / . 4) be a structure. J t is called suitable
for F if I t is defined for all predicate symbols, function symbols, and for
all variables that occur free in F.

E x a m p l e : F = V x P (x , f (x)) A Q(g(a, z)) is a formula. Here, P is a binary
and Q a unary predicate, f is unary, g a binary, and a a 0-ary function
symbol. The variable z is free in F. An example for a structure ,4 =
(U t , I t) which is suitable for F is the following.

I t (P)

1.4(Q)

I . , (f)

= { 0 , 1 , 2 , 3 , . . .) = I N ,

= p t = { (m,n) lrn, n E U t and m < n},

_ Q t ._ {n E U t In is prime }

= f t = the successor function on U t ,

hence f t (n) = n + 1,

= g t = the addition function on U t ,

hence g t (m , n) = m + n,

- a t = 2 ,

- z t - 3 .

In this s tructure F is obviously "true" (we will define this notion in a
moment) , because every natural number is smaller than its successor, and
the sum of 2 and 3 is a prime number.

Of course, for this formula F one can also define suitable structures in
which F is "false". Tha t is, F is not a "valid" formula, i.e. F is not true in
every suitable structure.

We do not intend to give the impression that the universe of a structure
needs to be a set of numbers. Now we present an example of a structure
which might look a little artificial at first, but this type of structure will
play a crucial role in Section 2.4. Let F be a formula containing at least
one constant (i.e. a function symbol with arity 0), and let .A = (U t , In) be
a structure where U t consists of all variable-free terms that can be built
from the symbols occuring in F. For the example formula F above, we get

UA = {a, f (a) , g(a, a), f (g(a , a)), g(f (a) , a), . . .}.

46 CHAPTER 2. PREDICATE LOGIC

The crucial point is the interpretation of function symbols. For the function
symbol f in F and for any term t E U-a, let f-a(t) be the term f (t) E U-a,
and for the function symbol g in F and for any terms t l,t2 E U-a let
g-a(tl,t2) be the term g(tl,t2) E U-a. Furthermore, let a-a = a. The reader
should see what kind of interaction between syntax and semantics is going
on here. The terms in U-a are interpreted by themselves. For a complete
definition of a structure .A, the interpretation of the predicate symbol P
still has to be given (i.e. the definition of I-a has to be extended to P) . We
leave it to the reader to do this in such a way that F becomes true (resp.
false) under .A.

D e f i n i t i o n (semantics of predicate logic - continued)

Let F be a formula and let .A = (U.a, I-a) be a suitable structure for F. For
each term t occurring in F, we denote its value under the structure .A as
.A(t) and define it inductively as follows.

1. If t is a variable (i.e., t = x), then we let A(t) = x-a.

2. I f t has the form t = f (t l , . . . , t k) where t l , . . . t k are terms and f is a
function symbol of arity k, then we let A(t) = f~4(A(t l) , . . . ,.A(tk)).

The rule 2 also includes the possibility that f has arity 0, that is, t has the
form t = a. In this case we get A(t) = a-a.

Similarly, we define the (truth-)value of the formula F, denoted .A(F),
under the structure .A by an inductive definition.

1. If F has the form F = P (t l , . . . , t k) where t l , . . . , t k are terms and P
is a predicate symbol of arity k, then

A(F)- { 1, if (.A(t l) , . . . , .A(tk)) E P-a
0, otherwise

2. If F has the form F = --,G, then

1, i fA(G) - 0
A (F) - 0, otherwise

3. If F has the form F = (G A H), then

1, i f A (G) - 1 and A (H) - 1
A (F) - 0, otherwise

2.1. F O U N D A T I O N S 47

4. If F has the form F = (G V H), then

1, i f X (G) - 1 or A (H) - 1
. / t (F) - 0, otherwise

5. If F has the form F = VzG, then

{ 1, if for all u e U~, ~ , / ~ I (G) -
A (F) - O, otherwise

Here, Afx/~] is the structure .A', which is identical to .4 with the

exception of the definition of z A' : No matter whether / .4 is defined
on z or not, we let x ~' = u.

6. If F has the form F = 3zG, then

1, if there exists some u e U~t such that .Afx/~I(G) - 1
A (F) - O, otherwise

If for a formula F and a suitable structure ,4 we have .4(F) = 1, then
we denote this by ,4 ~ F (we say, F is ~rue in .4, or .4 is a model for F) . If
every suitable structure for F is a model for F, then we denote this by ~ F
(F is valid), otherwise ~= F. If there is at least one model for the formula F
then F is called satisfiable, and otherwise unsatisfiable (or contradictory).

Exerc i se 44: Consider the following formula

F = Vx3yP(x , y, f (z)) .

Define a suitable structure .4 = (U~t,/.4) for F which is a model for F, and
another structure B = (Us, IB) which is not a model for F.

Many notions from propositional logic, like "consequence" and "equiva-
lence" can be translated directly into predicate logic. We will use these
notions in the following without giving new definitions.

R e m a r k s :

1. Analogously to propositional logic, it can be shown

48 C H A P T E R 2. P R E D I C A T E L O G I C

.

,

F is valid if and only if -~F is unsatisfiable.

Predicate logic can be understood as an extension of propositional
logic in the following sense. If all predicate symbols are required
to have arity 0 (then there is no use for variables, quantifiers, and
terms), essentially we get the formulas in propositional logic where the
predicates po play the role of the atomic formulas Ai in propositional
logic.

It even suffices not to use variables (and therefore also no quantifiers)
such that predicate logic "degenerates" to propositional logic. Let

F = (Q(a) v ~ n (f (b) , c)) A P(a, b)

be a formula without variables (but with predicate symbols of arity
greater than 0). By identifying different atomic formulas in F with
different atomic formulas Ai of propositional logic, such as

Q(a) , , A1

R (f (b) , c) ". " A2

P(a, b) ". ~ A3

we get
F' = (A1 V -~A2) A A3 �9

Obviously, a formula obtained like F ~ from F is satisfiable (or valid)
if and only if F is satisfiable (or valid).

Observe that a formula without occurrences of a quantifier (e.g. the
matrix of a given formula) can be transformed into an equivalent
formula in C N F or D N F where only the tools from propositional
logic are needed.

Although predicate logic is expressionally more "powerful" than pro-
positional logic (i.e. more statements in colloquial language can be
expressed formally), it is not powerful enough to express every con-
ceivable statement (e.g. in mathematics). We obtain an even stronger
power if we allow also quantifications that range over predicate or
function symbols, like

F = V P 3 f V x P (f (x)) .

This is a matter of the so-called second order predicate logic (that
we will not study in this book). What we consider here is the first
order predicate logic. The elements of the universe (symbolized by the

2.1. FOUNDATIONS 49

variables in a formula) are understood as first order objects whereas
predicates and functions defined on the universe are second order
objects.

Exe rc i se 45: Consider the following formulas F1, F2, F3 which express that
the predicate P is reflexive, symmetric and transitive.

F~

F2

F3

= VzP(z , z)

= V~Vy(P(~, y) --, p(y, ~))

= VxVyVz((P(z, y) A P(y, z)) ---, P(x, z))

Show that none of these formulas is a consequence of the other two by
presenting structures which are models for two of the formulas, but not for
the respective third formula.

Exe rc i se 46: In predicate logic with identity the symbol - is also permit-
ted in formulas (as a special binary predicate with a fixed interpretation)
which is to be interpreted as identity (of values) between terms. How has
the syntax (i.e. the definition of formulas) and the semantics (the definition
of .A(F)) of predicate logic to be extended to obtain the predicate logic
with identity?

Exerc i se 47: Which of the following structures are models for the formula

F = 3x3y3z(P(x, y) A P(z, y) A P(x, z) A -,P(z, x)) ?

(~) t r A = ~ , pA = {(m, n) I m,,~ ~ IN, m < n}

(b) UA = IN, p~t = { (m ,m + 1) Ira E IN}

(c) U~t = 2 ~ (the power set of IN),
p~t = {(A, B) [A, B C_ IN, A C_ B}

Exerc i se 48: Let F be a formula, and let z l , . . . , xn be the variables that
occur free in F. Show:

50 C H A P T E R 2. P R E D I C A T E L O G I C

(a) F is valid if and only if VxlVz2 . . . V x , F is valid,

(b) F is satisfiable if and only if 3x13x2... 3x , F is satisfiable.

E x e r c i s e 49: Find a closed satisfiable formula F, such that for every model
A - (U.4,1.4) of F , IU.41 _> 3.

E x e r c i s e 50: Let F be a satisfiable formula and let .4. be a model for F
with [UA[- n. Show that for every m > n there is a model Bm for F with
[Us., [- m. Furthermore, there is a model Boo for F with [Us~ [- oo.

Hint: Pick some element u from U.4, and add new elements to Us.,
having the same properties as u.

E x e r c i s e 51: Find a satisfiable formula F of predicate logic with identity
such that for every model .4. of F , [U.4[< 2.

This exercise seems to contradict the previous exercise. Convince your-
self that there is no contradiction!

E x e r c i s e 52: Find formulas of predicate logic with identity (cf. Exercise
46) which contain a binary predicate symbol P (or a unary function symbol
f) and which express:

(a) P is a anti-symmetric relation.

(b) f is a one-one function.

(c)]' is a function which is onto.

E x e r c i s e 53: Formulate a satisfiable formula F in predicate logic with
identity (cf. Exercise 46) in which a binary function symbol f occurs such
that for every model .4. of F it holds"

2.2. N O R M A L FORMS 51

(U~t, f~t) is a group.

Exerc i se 54: A stack is a well known abstract data structure in Computer
Science. Certain predicates and functions (better: operations) are defined
to test the status of the stack or to manipulate the stack. E.g., IsEmpty is
a unary predicate expressing the fact that the stack is empty, and nullstack
is a constant that stands for the empty stack. Further, top (giving the top
element of the stack) and pop are unary functions, and push is a binary
function (which gives the new stack after pushing a new element on top of
the given stack).

"Axiomatize" these operations which are allowed on a stack by a formula
in predicate logic in such a way that every model of this formula can be
understood as an (abstract) stack.

Hint" A possible part of such a formula might be the formula

2.2 N o r m a l F o r m s

The concept of (semantic) equivalence can be translated into predicate logic
in the obvious way: two formulas F and G of predicate logic are equivalent
(symbolically: F =_ G) if for all structures ,4 which are suitable for both F
and G, ,4(F) = A(G).

Also we observe that all equivalences which have been proved for for-
mulas in propositional logic still hold in predicate logic, e.g. deMorgan's
laW:

-~(F A G) - (-~f V-~G)

For the purpose of manipulating formulas of predicate logic, to convert
them to certain normal forms etc., we need equivalences which also include
quantifiers.

T h e o r e m

Let F and G be arbitrary formulas.

52 C H A P T E R 2. P R E D I C A T E L O G I C

1. --VxF -- Hx-~F
-~3zF = Vx-~F

2. If x does not occur free in G, then
(V x F A G) - V x (F A G)
(V~F v G) = W(F v G)
(3 x F A G) - 3 x (F A G)
(3 x F V G) - 3 x (F V G)

3. (V~F ^ V~G) - V~(F ^ G)
(3 ~ F v 3~G) = 3 ~ (F v G)

4. V x V y F - VyVxF

3 x 3 y F - 3 y 3 x F

P r o o f i As an example, we only present the proof for the first equivalence in
2. Let ,4 - (Ujt,/ .4) be a structure, suitable for both sides of the equivalence
to be proved. Then we have:

.A(VxF A G) = 1

iff . A (V x F) = 1 and A (G) = 1

iff for all u 6 U~, .A[x/.](F) - 1 and .A(G) = 1

iff for all u 6 U.4, .A[x/ .] (f) = 1 and .Aff~/u](G) = 1 (because x
is not free in G, we have .A(G) - .A[x/u](a))

iff for all u E U.4, .A[~/u]((F A G)) = 1

if~ ~ (W (F ^ G)) = ~.

It is even more interesting to observe which pairs of very similar looking
formulas are not equivalent:

(V~F v V~G) ~ V~(F v a)

E x e r c i s e 55: Confirm this by exhibiting counterexamples (i.e. structures
which are models for one of the formulas, but not for the other).

2.2. NORMAL FORMS 53

Exerc i se 56: Show that F - (3 x P (x) ~ P (y)) is e q u i v a l e n t to G - -

v~(P(~)-- , P(y)).

Exerc i se 57: Prove that Vx3yP(z, y) is a consequence of 3uVvP(v, u), but
not vice versa.

We further observe that the substitution theorem from propositional logic
analogously holds in predicate logic. The induction proof (on the formula
structure) that was given in Section 1.2 can be extended to the cases that
can occur for formulas of predicate logic (Case 4: F has the form F - 3xG,
Case 5: F has the form F = VxG).

This leads over to the next remark. Induction proofs on the formula
structure can be done in predicate logic as well (with more cases). Since
the (inductive) definition of terms precedes the definition of formulas, and
terms are parts of formulas, it is sometimes necessary to prove the assertion
(or an adaptation of the assertion) inductively for terms first, and then for
formulas.

Observe that the equivalences 1-3 in the above theorem, applied from
left to right, "drive the quantifiers in front of the formula".

Example:

(~(3xP(x, y) V VzQ(z)) A 3wP(f(a, w)))

- ((-~3xP(z, y) A ~VzQ(z)) A 3wP(f(a, w))) (de Morgan)

-- ((Vz~P(z, y) A 3z~Q(z)) A 3wP(f(a, w)) (by 1.)

=_ (3wP(f(a, w)) A (Vx-~P(z, y) A 3z~Q(z))) (commutativity)

- 3w(P(f(a, w)) A Vx(-~P(z, y) A 3z~Q(z))) (by 2.)

- 3w(Vx(::]z~Q(z) A ~P(x, y)) A P(f(a, w))) (commutativity)

-- 3w(Vx3z(~Q(z) A -~P(x, y)) A P(f(a, w))) (by 2.)

- 3wVx3z(~Q(z) A ~P(x, y) A P(f(a, w))) (by 2.)

Several points need to be observed. The order of the quantifiers which re-
sults at the end, is not necessarily uniquely determined from the beginning.
Actually, it depends on the type and the order of the applied equivalences.
In the above example, every permutation of "3w", "Vz" and "3z" would

54 C H A P T E R 2. P R E D I C A T E L O G I C

have been achievable. (It is not always like this). But adjacent quantifiers
of the same type can always be swapped (see 4.).

To make it possible that the equivalences under 2. can always be ap-
plied, we need to rename variables (in such that way that we get an equiv-
alent formula).

Def in i t ion (substitution)

Let F be a formula, x a variable, and t a term. Then, Fix~t] denotes the
formula, obtained from F by substituting t for every free occurrence of x
in F.

By [x/t], a substitution is described. In the following, we treat substitu-
tions as independent objects, describing a mapping from the set of formulas
to the set of formulas. Such substitutions can be concatenated, e.g.

sub = [xltl][ylt2]

describes the effect of first substituting in a formula all free occurrences of
x by tl, and then, all free occurrences of y by t2. (Note that tl can contain
occurrences of y).

Exe rc i se 58: Prove by induction on the formula structure the following
translation lemma. Here, t is a variable-free term.

= At /ac,)l(F)

The proof of the following lemma is just as easy.

L e m m a (renaming of bound variables)

Let F = Q x G be a formula where Q E {3, V}. Let y be a variable that does
not occur free in G. Then, F = QyG[x/y].

By systematic applications of the previous lemma where always new vari-
ables have to be taken for y, the following lemma can be proved. Call a

2.2. NORMAL FORMS 55

formula rectified if no variable occurs both bound and free and if all quan-
tifiers in the formula refer to different variables.

L e m m a

For every formula F there is an equivalent formula G in rectified form.

E x e r c i s e 59: Find an equivalent and rectified formula for

F = Vz3yP(z , f(y)) A Vy(Q(x, y) v R(x)).

The above example already shows that every formula can be transformed
into an equivalent and rectified formula where all quantifiers stand "in
front". We summarize this situation more formally in the following defini-
tion and theorem.

D e f i n i t i o n (prenex form)

A formula is in prenez form if it has the form

Q l y l Q 2 y 2 . . . Q , y , F ,

where Qi E {3, V}, n > 0, and the yi are variables. Further, F does not
contain a quantifier.

T h e o r e m

For every formula F there exists an equivalent (and rectified) formula G in
prenex form.

P r o o f (by induction on the formula structure of F):
If F is an atomic formula, then F already has the desired form. Thus we
choose G = F.

For the induction step we consider the different cases.

56 C H A P T E R 2. P R E D I C A T E L O G I C

1. Let F have the form ~F1 and Gz - Qzy lQ2y2" ' " Q , y n G ' is the for-
mula, equivalent to F1, which exists by induction hypothesis. Then
we have

F -

where Qi - 3 if Qi - V, and Qi - V if Qi - 3. This formula has the
desired form.

2. Let F have the form (Fz o F2) where o E {A, V}, then there are, by
induction hypothesis, equivalent formulas G1, G2 in prenex form for
Fx and F2, resp. By renaming the bound variables, say in Gz, we can
make the bound variables of G1 and G2 disjoint. Let then Gx have the
form QlylQ2y2"" "QkYkG'I and G2 have the form Q'xzxQ'2z2.. .Q~zzG' 2
where Qi, Q~ E {3, V}. It follows that f is equivalent to

I l I I
qzyzQ~y2 . . "qkykQzzz O2z2 "'" Qt zl (G' 1 o G 2)

This formula has the desired rectified prenex form.

3. If F has the form QzF1 where Q E {q,v}, then the formula F1 is
equivalent, by induction hypothesis, to a formula of the form

QzyzQ2y2 . . "QkykF~.

By renaming bound variables, we can assume that the variable x is
different from all the variables yi. Then, F is equivalent to

QzOly l Q2y2""" Ok yk F~.

Exe rc i s e 60: Implicit in the above proof, there is an algorithm hidden to
convert formulas into rectified prenex form. Formulate such an algorithm
in a more direct way, using a PASCAL-like notation.

E x e r c i s e 61: Convert the formula

F - (Vx3yP(x , g(y, f (x))) V ~Q(z)) v ~ V x R (x , y)

into rectified prenex form.

2.2. N O R M A L F O R M S 57

From now on, we use the abbreviation R P F for "rectified and in prenex
form".

D e f i n i t i o n (Skolem form)

For each formula F in R P F we define its Skolem .formula as the result of
applying the following algorithm to F.

whi le F contains an existential quantifier do
b e g i n

Let F have the form F - VylVy2. ." Vyn 3zG for some for-
mula G in R P F and n > 0 (the block of universal quan-
tifiers could also be empty);

Let f be a new function symbol of arity n that does not
yet occur in F ;

F := V y l V y 2 . . . V y n G [z / f (y l , y 2 , . . . , yn)];

(i.e. the existential quantifier in F is canceled and each
occurence of the variable z in G is substituted by
f(y , y,))

end.

Exe rc i se 62: Find the Skolem form of the formula

Vx3yVz3w(~P(a , w) V Q(f (x) , y)).

T h e o r e m

For each formula F in R P F , F is satisfiable if and only if the Skolem form
of F is satisfiable.

P r o o f : We show that after each application of the while-loop a formula
results which is satisfiable if and only if the original formula is satisfiable.
Hence, let

F = VylVy2 �9 �9 �9 Vyn 3zG .

After one application of the while-loop we obtain the formula

F ' - y 2 , . . . , y .)] .

58 C H A P T E R 2. P R E D I C A T E L O G I C

Let us suppose first that F ' is satisfiable. Tha t is, there is a structure ,4,
suitable for F ' , with ~ (F ') = 1. Then A is also suitable for F, and we get

for all u l , u 2 , . . . , u n E Un ,

By the translat ion lemma,

for all ul, u 2 , . . . , u n E Un ,

A[y,I , , ,][,~I, ,{ . . .[, , , I , , , ,][~/, ,](G) = 1 ,

where v : f n (u l , U2, ' ' ' , Un). Hence we get

for all ul, u 2 , . . . , un E U n there exists a v E Un such tha t

A{y,l,,,][y~l,,~]...[y,,i,,,,][~,l,,](G) = 1 .

Therefore,
.A (Vy t Vy2 . . . V y , 3 z G) = 1 .

In other words, ~ is also a model for F.

Conversely, suppose F has the model ,4 = (Un, In) . We can assume
t h a t / . 4 is undefined on function symbols that do not occur in F . Hence,
In is not defined on f and not (yet) suitable for F ' . Since ~ (F) = 1, we
have

for all u l, u 2 , . . . , un E Un there exists a v E Un
such that A~y,/, , ,]. . .[y, . / , , , ,][,/ , ,](G) = 1 .

(,)

Now we define a new structure ,4' which is an extension of ,4 such t ha t / . 4 ,
is additionally defined on f . We let f n ' be defined as

- , ,

where v E Un = Un, is chosen according to (,) . (At this point of the
proof, the a z i o m o f choice is used which guarantees the existence of such
a "non-constructively" defined function). Using this definition of f n ' , we
obtain

for all ul,..., u, E [Ix ,

A ' [y ~ I ~] . . . [~ . I ~ , .] [; I] ~ , (~ ,~ , . . . ,~ , .)] (G) - i.

2.2. N O R M A L F O R M S 59

Using the translation lemma,

for all u 1 , . . . , Un E U.a ,

.A ' [y, i , . , ,] . . . [y, , lu, ,] (G[zl f (Yi , . . . , yn)]) = 1,

and therefore,

A ' (V y , - . . V y n G [z l . f (y i , . . . , y,.,)]) = 1.

Hence, ,4' is a model for F ' .

Notice that the transformation of a formula to Skolem form does not
preserve equivalence (because of the new function symbol(s) occurring in
the Skolem formula). What we have shown is a weaker type of equivalence
with respect to satisfiability: F is satisfiable if and only if F ~ is satisfiable.
In the following, we call this situation s-equivalence.

Exerc i se 63: Apply all transformational steps introduced in this chapter
(rectification, prenex form, Skolem form) to the formula

V z 3 y (P (x , g(y) , z) V ~ V x Q (x)) A -~Vz3x~R(J ' (x , z), z).

Exerc i se 64: If we modify the algorithm to produce the Skolem form such
that the roles of V and 3 are swapped, then we obtain an algorithm which
transforms a formula F in R P F into a formula F ~ with no occurrences of
universal quantifiers. Prove that F is valid if and only if F ' is valid.

Exerc i se 65: Construct an algorithm that produces a Skolem form of a
rectified formula directly, i.e. without the intermediate step of producing a
prenex form.

Hint" It is important to distinguish between existential (universal) quan-
tifiers in the original formula that lie within the "scope" of an even (odd,
resp.) number of negation signs.

Finally, we want to summarize all the transformations which should be
applied to a general formula to obtain an s-equivalent formula which is in
appropriate form for the various algorithms considered in the next sections.

60 CHAPTER 2. PREDICATE LOGIC

Given : A formula F in predicate logic (with possible occurrences of free
variables).

1. Rectify F by systematic renaming of bound variables. The result is
a formula F1 equivalent to F.

2. Let Yl , . . . , yn be the variables that occur free in F1. Substitute F1 by
F2 = 3yl 3y2.. . 3y, Fx. Then, F2 is s-equivalent to F1 (cf. Exercise 48)
and also to F. Further, F2 is closed.

3. Produce from F2 a formula F3 in prenex form. F3 is equivalent to F2,
hence s-equivalent to F.

4. Eliminate the existential quantifiers in F3 by transforming F3 into
a Skolem formula F4. The formula F4 is s-equivalent to F3, hence
s-equivalent to F.

5. Convert the matrix of F4 into C N F (and write the resulting formula
F5 down as a set of clauses).

We demonstrate the above procedure with an example. Let

F = (~3x(P(x, z) V VyQ(x, f(y))) V VyP(g(x, y), z))

be given. Renaming y to w in the second disjunct gives a rectified form

F1 = (~3x(P(x,z) V VyQ(x, f(y))) V VwP(g(x, w),z))

The variable z occurs free in F1. Hence we let

F2 = 3z((--,3x(P(x, z) V VyQ(x, f(y))) v VwP(g(x, w), z))).

Converting to prenex form gives (for example)

F3 = 3zVx3yVw((--,(P(x, z) A ~Q(x, f(y))) v P(g(x, w), z)).

Now we produce the Skolem form. A new function symbol a of arity 0 (i.e.
a constant) is substituted for z and h(x) is substituted for y.

F4 = VxVw((~(P(x,a) A--,Q(x,f(h(x)))) V P(g(x, w), a)).

Transforming the matrix of F4 into C N F yields

F5 = VxVw((~(P(x, a) V P(g(x, w), a)) A (~Q(x, f(h(x)))) V P(g(x, w), a)).

2.3. UNDECIDABILITY 61

Now, F5 can be written as a clause set:

{ {--,(P(x, a), P(g(x, w), a) }, {--,Q(x, f(h(x)))), P(g(x, w), a)} }.

Every variable is understood as universally bounded. Hence we do not need
to write down the universal quantifiers explicitly.

This clause presentation of formulas in predicate logic is the starting
point for several algorithms, based on resolution, to be presented in Sections
2.5 and 2.6.

Finally we remark that all the transformational steps can be done algo-
rithmically.

2.3 Undecidability

A general theme of this book is the search for an algorithmic test for sat-
isfiability or validity of formulas. We will see in this section that general
algorithms of this type cannot exist for formulas in predicate logic. Briefly,
predicate logic is undecidable. (More precisely, the satisfiability problem
and the validity problem for formulas in predicate logic are undecidable).
We must be content with so-called semi-decision algorilhms which will be
presented in the next section.

The truth table method for testing satisfiability or validity of formulas
discussed in the chapter on propositional logic could be derived from the
insight that it is enough to test a finite (although exponential) number
of t ruth assignments. In predicate logic we have to deal with structures
instead of t ruth assignments. The question is whether we can restrict our
attention to a selection of finitely many structures, and also, to structures
of finite size. As already suggested, this kind of direct adoption of the truth
table method does not work.

O b s e r v a t i o n : There exist formulas in predicate logic which are satisfiable,
but have no models of finite size (i.e. with a finite universe).

Consider the formula

F = VxP(x, f (x))
^

A VuVvVw((P(u, v) A P(v, w)) --, P(u, w)).

62 C H A P T E R 2. P R E D I C A T E LOGIC

This formula F is satisfiable, because it has for example the following model
A = (U.4,1.4) where

U.4 = { 0 , 1 , 2 , 3 , . . . } = IN

p.4 = { (m , n) l m < n},

f~(=) - =+1.

But this formula does not possess a finite model. Suppose, B = (Us, Is) is
such a model for F. Then let u be an arbitrary element of Us. Consider
the sequence

u0, ux, u2 , . . . E Us where u0 = u and ui+x = fS (u i) .

Since Us is finite, there exist natural numbers i and j , i < j, such that
ui = uj. By the first subformula of F we have:

(~0, ~) e p~, (~, ~) ~ P~, (~, ~) ~ P~,. . .

Further, the third subformula of F says that pS must be a transitive re-
lation. This implies that (ui, uj) E pS . Since ui = uj, we have found an
element v of the universe Us with (v, v) E pS. But this contradicts the
second subformula of F which says that pS must be non-reflexive. This
shows that F has only infinite models.

It should be said that the above argument is not yet a formal proof of
undecidability of predicate logic. The existence of satisfiable formulas which
have only infinite models just shows that there is no direct translation of
the truth table method into predicate logic to yield a decision procedure.
The possible existence of totally different algorithms is not touched by the
above argument.

For a formal presentation of an undecidability proof, it is necessary
to clarify and formally define the notions "computation" and "algorithm"
first. After all, we need to show that there is no algorithm that is able
to compute (in a finite amount of time) whether a given formula is, say,
satisfiable. These issues are subject of a different field, computability ~he-
ory, which is not the subject of this book (see, for example, the books by
Manna or Hopcroft and Ullman). Therefore we proceed with some informal
explanations, and then use a result from computability theory, namely that
a specific well known problem is undecidable. Relying on this fact, we can
proceed formally.

In computability theory, a function is called computable (or a problem
is called decidable) if there is an abstract mathematical machine (Turing-
machine) which, started with an input which is in the function domain

2.3. U N D E C I D A B I L I T Y 63

(which is a syntactically correct instance for the problem, resp.) halts after
a finite number of steps and outputs the correct function value (answers
correctly "yes" or "no", according to the problem definition). If no such
machine exists, then the function (problem) is called non-computable (un-
decidable).

We have to deal with problems in the following. Such a problem is given
by specifying the form of a syntactically correct instance for the problem,
and what the question to be solved is.

In particular, we will show that the following problem is undecidable.

Instance: A formula F in predicate logic.

Question: Is F valid?

In what follows, we use a result from computability theory: the following
problem, called Post's Correspondence Problem (PCP for short), is unde-
cidable (see Hopcroft and Ullman).

Instance" A finite sequence (xl, Yl) , . . . , (xk, Yk) of pairs of non-
empty strings over the alphabet {0, 1}.

Question: Does there exist a finite sequence of indices il, i 2 , . . . , i , E
{ 1 , . . . , k } , n > 1, such that x i l x i 2 . . . x i . - yilyi~ . . . y i . ?

In the case that i l , . . . , i , exists, we call it a solution of the PCP.

E x a m p l e : The correspondence problem for

K -- ((1,101), (10, 00), (011, 11)),

that is
x l - - 1 x 2 - - 1 0 x a - - 0 1 1
Y l - 101 Y 2 - 00 Y 3 - 11

has the solution (1,3,2,3) because:

xlxax2~a - 101110011 - ylyay2ya

Exerc i se 66: Show that the following instance of PCP has a solution:

x l - - 0 0 1 :c2--01 xa--01 x4--10
Y l - - 0 Y2--011 Ya--101 y4--001.

64 CHAPTER 2. PREDICATE LOGIC

(Warning: the shortest solution consists of 66 indices. Without using a
computer, the solution can be found if constructed "from behind").

We use the proof method of reduction to show that the validity problem is
undecidable. That is, from a hypothetical decision algorithm for the validity
problem we derive the existence of a decision algorithm for the PCP - which
is in contradiction to the result stated above. Hence, a decision algorithm
for the validity problem does not exist, this means that the problem is
undecidable.

Many known undecidability results have been shown by reduction. Also,
it is very common to use the undecidability of the PCP - in particular, for
undecidability proofs in Formal Language Theory.

T h e o r e m (Church)

The validity problem for formulas of predicate logic is undecidable.

Proof: As discussed above, the task is to define an algorithmic method that
transforms arbitrary instances K for the PCP into certain instances, i.e.
formulas, F = F K for the validity problem, such that K has a solution if
and only if the formula F K is valid. If this can be shown then the hypo-
thetical existence of a decision algorithm for the validity problem implies
the existence of a decision algorithm for the PCP. Hence, let

K = ((xl ,Yl) ,(x2, y2) , . . . , (xk ,yk))

be an arbitrary correspondence problem. The desired formula F = F K con-
tains a constant a and two unary function symbols f0, fl . Furthermore, a
binary predicate symbol P occurs in F. For a more succinct representation
of the formula, we use the following abbreviation. Instead of

we write

fj, (f j~ (. . . f j , (x) . . .)) with j, E {0, 1}

(The indices now stand in reverse order).

Our formula F = F K has the form

F = ((F1AF2)-- . F3).

2.3. U N D E C I D A B I L I T Y 65

The subformulas are

k

F1 -- A P(fx , (a) , fy,(a))
i : l

k

F, - wvv(v(, v) -4 A s,, (,)))
i - -1

F3 = 3zP(z , z).

Obviously, for given K, F can be computed from K in a finite amount
of time. We have to show that the formula F is valid if and only if the
correspondence problem K has a solution.

Let us assume first that F is valid. Then every suitable structure for F
is a model. In particular, the following structure .4 = (U~t,/.4) must be a
model for F .

~

a . A m

So~(,~) -
S ~ (~) -

p A =

{0, 1}*,

e (the empty string),

a0 (the concatenation of a and 0),

a l (the concatenation of a and 1),

{ (a,/3) [a,/3 e {0, 1} + and there are indices
i x , i 2 , . . . , i t such that a - zilzi2 . . . z i , and

= y~,y~, . . . y~, }.

That is, a pair of strings (a, fl) is in p~t if a can be built up from the zi
by the same sequence of indices as/3 from the yi. It is easily seen that A
is suitable for F . Hence A ~ F. Further, it can be checked that .At ~ F1
and Jt ~ F2. Since F has the form of an implication ((F~ A F2) ---+ F3),
it follows that A ~ F3. This means that there exists some a such that
(a, a) E p~t. Hence K has a solution.

Conversely, suppose that K has the solution i1, i 2 , . . . , i , , . Let .4 be
an arbitrary structure suitable for F. We have to show that A ~ F. If
A ~ F1 or ~ ~ F2, then, by the form of F , ~t ~ F follows immediately.
Hence let us assume that ~ ~ F1 and A ~ F2, thus .4 ~ (F~ A F2). We
now define a mapping (an embedding)/z: {0, 1}* ~ U~t by #(r = a Jt and
#(x) = ..4(fx(a)) for x ~- e.

Because ,4 ~ El, we have for i = 1 , 2 , . . . , k : (#(z i) ,#(y i)) e pA .
Because of .4 ~ F2, we have for i = 1, 2 , . . . , k, that (#(u), lZ(V)) E p~t
implies (•(uzi), #(vyi)) ~_ p.a. By induction, it follows that

(, (~ , ~ , ~ . . . ~), , (y , , y , , . . . y ~ .)) e P ~ .

66 C H A P T E R 2. P R E D I C A T E L O G I C

In other words, for u - p (x i , x i ~ . . . x i .) - p(y i , y i ~ . . , y i .) it is true that
(u , u) E B .a �9 From this, we get .,4 ~ 3 z P (z , z) , that is, ,4 l= F3, and
therefore, .4 ~ F. �9

C o r o l l a r y

The satisfiability problem of predicate logic

Instance" A formula F of predicate logic.

Quest ion: Is F satisfiable?

is undecidable.

P roof : A formula F is valid if and only if --F is unsatisfiable. There-
fore, the hypothetical existence of a decision algorithm for the satisfiability
problem leads to a decision algorithm for the validity problem, and we have
shown above that such an algorithm does not exist. �9

The reader will have noticed that the proof of this corollary is another
example of the reduction method.

Exerc i se 67: Prove that the validity problem (and therefore also the sat-
isfiability problem) is undecidable even for formulas without occurrences of
function symbols.

Exerc i se 68" Prove that the following variation of the PCP is decidable"

Instance" A finite sequence of pairs (x l , y l) , . . . , (x k , Y k) where
x i ,Y i E {0, 1} +.

Quest ion: Do there exist finite sequences of indices il, i 2 , . . . , in,

n > 1, and j l , j 2 , . . . , j m , m > 1, such that xi lz i2 . . . x i n =

Yj l Yj2 " " Yjm ?

2.3. UNDECIDABILITY 67

E x e r c i s e 69: In monadic predicate logic all the predicate symbols are
unary (i.e. monadic) and no occurrences of function symbols are allowed.

Prove: If some closed formula F of monadic predicate logic with the
unary predicate symbols P1 , . . . , Pn is satisfiable, then there is already a
model of cardinality 2". From this, conclude that satisfiability (and also
validity) for formulas in monadic predicate logic is decidable.

Hint: Show that the universe of every model A = (U~t,I.~) for F can
be partitioned into at most 2 '~ equivalence classes where two elements
u,v E Uct are equivalent if they have the same truth value under each
of P ~ , . . . , P ~ . Then, a new model B can be defined for F whose universe
consists of these equivalence classes.

E x e r c i s e 70: Show that the following problem is undecidable"

Instance: The description of an algorithm A.

Question: If A is started with its own description as input, does
A stop?

E x c u r s i o n (mathematical theories)

At this point, some important notions in Formal Logic shall be discussed.
What is a formal mathematical theory? These issues play an important
role in standard presentations of logic, but in this book with its emphasis
on Computer Science and algorithmic aspects of logic, it is more a fringe
area.

A lheory is a non-empty set T of fo rmulas - very often restricted to
formulas obeying certain syntactical restrictions (e.g. only a given finite set
of function symbols or predicate symbols may be allowed) - which is closed
under consequence. More precisely, T is a theory, if for all F1, F2,. . . , Fn E
T and formulas G, if G is a consequence of/ '1, F 2 , . . . , Fn then G E T. The
formulas which are elements of a theory T are called theorems of T.

Every theory T necessarily has to include all valid formulas (possibly
only those obeying the syntactical restriction as above). Furthermore, a
theory either contains all formulas, or it is disjoint from the set of unsat-
isfiable formulas. The former situation is the degenerate case of an incon-
sistent theory. A theory is called inconsistent if it contains some closed
formula F together with its negation -~F. The following diagram indicates
the situation of a non-degenerate theory T.

68 CHAPTER 2. PREDICATE LOGIC

valid satisfiable, but not unsatisfiable
formulas valid formulas formulas

There are two different methods to define a particular theory.

The model theoretic method is to define a structure ,4 first, and then
take the theory of ,4 (in symbols: Th(.A)) as the set of all formulas for
which .4 is a model. That is,

Th(A) = {F I A ~ F}.

It is clear that a set of formulas of the form Th(.A) is really a theory, i.e.
it is necessarily closed under consequence. Such a theory is automatical ly
consistent. Further, such a theory is always complete, which means that for
every closed formula F, either F E T or -~F E T holds (but not both).

Examples for such model theoretically defined theories are Th(IN, +)
and Th(IN, + , ,) . Here, (IN, +) and (IN, +, ,) are the structures obtained
by taking as universe IN and interpretation of -I- as usual addition and �9 as
usual multiplication. These theories are called Presburger arithmetic and
(full) arithmetic, respectively. The formulas of the theories are restricted
to consist of the function symbols -t- and �9 (and possibly further constant
symbols and identity) only. For example,

w v ~ ((~ + y) �9 (~ + ~) = (~ �9 ~) + (2 �9 �9 �9 y) + (~ �9 ~))

is an element of Th(IN, +, ,).

The axiomatic method is to define a set of formulas M, the axioms, and
then take as the theory associated with M the set of formulas which are

2.3. UNDECIDABILITY 69

consequences of M. Formally,

Cons(M) {G I there are formulas F 1 , . . . , F,, E M,

such that G is a consequence of {F1 , . . . , F,,} }.

Again, the formulas in Cons(M) can be restricted to consist only of symbols
which occur in M. It is required that such an axiom set M is decidable, i.e.
for every formula F it should be possible to decide whether F E M or not.
In particular this is the case if M is finite.

A theory T is called (finitely) aziomatizable if there exists a (finite)
axiom set M such that T = Cons(M). For example, the set of valid
formulas of predicate logic is finitely axiomatizable, because

Cons(O) = {F IF is valid }.

Another example is the theory of groups. This is Cons(M) where

M = {VxVyVz(f(f(x,y),z) = f(x, f(y,z))),
=

y) =

It can be shown that any axiomatizable theory is semi-decidable (which
is the same as recursively enumerable; for an explanation of these notions
see Section 2.4). Furthermore, every complete and axiomatizable theory is
decidable. Now there are two main questions that can be investigated.

1. Are certain (axiomatizable) theories decidable? For example, we have
seen in Section 2.3 that the finitely axiomatizable theory Cons(O) is
undecidable (and hence, it cannot be complete).

2. Are certain model theoretic theories axiomat izable- or even decid-
able? It can be shown that Th(IN, + , .) is not axiomatizable (hence
not decidable). In other words, every arithmetically correct axiom
system M (for example: Peano arithmetic) necessarily is incomplete:

Cons(M) # Th(IN, +, .).

Arithmetical correctness means that M (and therefore also Cons(M))
is included in Th(IN,., +). (This is Ghdel's famous incompleteness
theorem). This is in contrast to the fact that Th(IN, +) is decidable
(and therefore axiomatizable).

Exerc i se 71: Why is every complete and axiomatizable theory decidable?

70 CHAPTER 2. PREDICATE LOGIC

2.4 Herbrand's Theory

One problem with dealing with formulas in predicate logic is that the defi-
nition of structures allows arbitrary sets as possible universes. It seems that
there is no systematic way to find out the "inner structure" and cardinality
of a potential model of a given formula. Can one enumerate all potential
structures to test them for being a model? If so, how?

Indeed, in the last section it was shown that the problem of determining
whether a given formula has a model or not is undecidable. This indicates
a borderline which we will not be able to pass: We cannot expect to devise
a decision algorithm. Nevertheless, in this section we will investigate the
remaining positive aspects, insofar as they are not in contradiction to the
undecidability result of the last section.

The (algorithmic) search for potential models of a formula can be re-
stricted to certain canonical structures. This theory which we will develop
in the following goes back to the work of Jacques Herbrand, Kurt GSdel
and Thoralf Skolem. In particular, Herbrand's work is important for the
approach taken here.

The starting point of our investigations are closed formulas, i.e. formulas
without occurrences of free variables, which are in Skolem form (hence also
in R P F) . In section 2.3 it was shown how every formula of predicate logic
can be transformed into a s-equivalent formula of this kind.

De f in i t i on (Herbrand universe)

The Herbrand universe D(F) of a closed formula F in Skolem form is the
set of all variable-free terms that can be built from the components of F.
In the special case that F does not contain a constant, we first choose an
arbitrary constant, say a, and then build up the variable-free terms. More
precisely, D(F) is defined inductively as follows.

1. Every constant occurring in F is in D(F). If F does not contain a
constant, then a is in D(F).

2. For every k-ary function symbol f that occurs in F, and for all terms
tt,t2, . . . , tk already in D(F), the term f(t2,t2,. . . ,tk) is in D(F).

E x a m p l e : Consider the following formulas F and G.

F = VxVyVzP(x,f(y),g(z,x))

2.4. HERBRAND'S THEORY 71

G = VxVyQ(c,f(x),h(y,b))

The formula F does not contain a constant. Therefore we get

D(F) {a, f(a), g(a, a), f(g(a, a)), f (f (a)) , g(a, f(a)), g(f(a), a),
g(f (a) , f (a)) , . . . }

and

D(G) {c, b, f(c), f(b), h(c, c), h(c, b), h(b, c), h(b, b),

f (f (c)) , f(f(b)), f(h(c, c)), f(h(c, b)), f(h(b, c)), . . .}

In the following, for a given formula F, D(F) will be used as the "standard"
universe to search for potential models for F - and we will show that this
results in no loss in generality.

De f in i t i on (Herbrand structures)

Let F be a closed formula in Skolem form. Then every structure .A =
(Uct, IA) is called a Herbrand structure for F if the following hold:

1. = D (F) ,

2. For every k-ary function symbol f occurring in F, and for all terms
t l , t 2 , . . . , t k e D(F), fA(t l , t2 , . . . , t k) = f (t l , t2 , . . . , t k) .

E x a m p l e : A Herbrand structure A = (UA,I~t) for the above example
formula F would have the following properties.

and

U.4 = D(F) = {a, f(a), g(a, a), . . .}

f'A(a) - f(a)

f'A(f(a))- f(f(a))

f'a(g(a ,a)) - f(g(a,a))
etc.

The choice of p.4 is still free. For example, we could define

72 C H A P T E R 2. PREDICATE LOGIC

(t l , t2 , t3) e p.a if and only if g(t l , t2) = g(t2, f(t3)) .

This Herbrand structure .4 would not be a model for F , because for tl = a,
t2 = f (a) , t3 = g(a, a) we have that g(a, f (a)) r g(f(a) , f (g(a, a))).

E x e r c i s e 72: Define a Herbrand structure for this example formula which
is a model (i.e. modify the definition of p.a).

In Herbrand structures the choice of the universe and the interpretation of
the function symbols is fixed by definition. What can be chosen freely is
the interpretat ion of the predicate symbols.

At this point, the reader should not proceed before the subtle meaning
of clause 2 in the definition of Herbrand structures is understood. There,
in a sense, syntax and semantics of terms are synchronized. Terms are
interpreted by "themselves". That is, in a Herbrand structure .4, for every
variable-free term t we have A(t) = t.

Therefore, for Herbrand structures the translation lemma (see Exer-
cise 58) gets the following simplified form

A(F[x/t]) = A[=/t](F)

tha t we will use in the following.

We call a Herbrand structure of a formula F a Herbrand model for F,
simply if it is a model for F.

T h e o r e m

Let F be a closed formula in Skolem form. Then F is satisfiable if and only
if F has a Herbrand model.

P r o o f : It is clear that a formula with a Herbrand model is satisfiable.

Conversely, let A = (U.a, I.a) be an arbitrary model for F. If there is
no occurrence of a constant symbol in F (this is the special case in the
definition of D(F)) , then we extend ,4 by the commitment

a "a -- m,

2.4. HERBRAND'S THEORY 73

where m is an arbitrary element of U.a. This modification of .,4 does not
change the property of being a model. Now, we define a Herbrand structure
B - (Ut3,//3) for F. By the definition of Herbrand structures, it remains to
define how to interpret the predicate symbols of F as predicates over the
Herbrand universe D(F). Let P be any n-ary predicate symbol in F, and
let t l , t 2 , . . . , t n E D(F). (Observe that by the above modification of A,
.A(t l) , . . . ,.A(tn) are well defined elements of UA). Now we define

(t l , t 2 , . . . , t n) E pB if and only if

(A(t i) ,A(t2) , . . . ,A(tn)) E P a

Hence, the definition of pB "imitates" the definition of p~t, by first trans-
forming the arguments t 1 , . . . , tn E D(F) = Ut3 into the universe of.A, and
then applying p.a.

Now we claim that B is a model for F. Actually, we show a stronger
statement: For every closed formula G in prenex form without existential
quantifiers that is built up from the same components as F (function sym-
bols and predicate symbols), if A ~ G then B ~ G. Then the first claim is
the special case F = G in the the second claim. The proof is by induction
on the number n of universal quantifiers in G.

In the case n = 0, G does not contain a universal quantifier. Then G
does not contain a variable. Therefore, immediately from the definition of
B, we even get A (G) = B(G).

If n > 0, then let G be a closed formula in prenex form with n universal
quantifiers in the prefix (and no existential quantifiers). Then G has the
form VxH where H has only n - 1 universal quantifiers. We cannot apply
the induction hypothesis to H directly because H is not necessarily closed
(x could occur free in H). By hypothesis, .A ~ G, therefore, for all u E U.a,
.A[,/u](H) = 1. In particular, for all u E U.a of the special form u = .A(t) for
some t E D(G), we have .A[,/,,](H) = 1. In other words, for all t E D(G),
we have .A[,/.a(t)](H) = .A(H[x/t]) = 1 (by translation lemma). Using the
induction hypothesis, B(H[x/t]) = 1 for all t E D(G). Using the translation
lemma again, we have that for all t E D(G), B[~:/t](H) = B(H[x/t]) = 1.
Hence, B(VxH) = B(G) = 1. []

The reader should convince himself that it is relevant for the proof that the
formula F is closed, and that F does not contain an existential quantifier.

74 CHAPTER 2. PREDICATE LOGIC

C o r o l l a r y (L5wenheim- Skolem)

Every satisfiable formula in predicate logic has a model which is countable
(i.e. it has a countable universe).

P roof : Using the methods of Section 2.2, every formula F in predicate
logic can be transformed into a s-equivalent closed formula G in Skolem
form. Furthermore, these transformations are such that every model of G
is also a model of F. Since F is satisfiable, G is satisfiable. Therefore, G
possesses a Herbrand model which is, by the above, also a model for F.
This Herbrand model has the universe D(G) which is countable, tt

De f in i t i on (Herbrand expansion)

Let F = VylVy2.. .VynF* be a closed formula in Skolem form. Then E(F),
the Herbrand expansion, is defined as

E(F) = {F*[yl/tl][y2/t2]"" [y,/t,] ltl, t2,..., t . e D(F)}

That is, the formulas in E(F) are obtained by substituting the terms in
D(F) in every possible way for the variables occurring in F*.

E x a m p l e : For the above mentioned formula

F = VxVyVzP(x , . f (y) , g(z, x))

we obtain the following first elements of E(F) ,

P(a, f(a), g(a, a)) using

P(f(a),f(a),g(a, f(a))) using

P(a,f(f(a)),g(a,a)) using

P(a,f(a),g(f(a),a)) using

P(g(a, a), f(a), g(a, g(a, a))) using

etc.

[~/a] [~1"] [z/a],
[~/.t'(a)] [y/a] [zl.],
[~/a] [~/.f(.)] [z/a],
[x/a] [y/a] [z// f(a)],
[x/g(a, a)] [y/a] [zla],

One should observe that the formulas in E(F) can be treated as formulas
in propositional logic because they do not contain variables. In a sense,

2.4. H E R B R A N D ' S T H E O R Y 75

instead of A1,A2, . . . another vocabulary is used. To define a structure
suitable for all formulas in E(F) it suffices to specify the truth values of
the atomic formulas in E(F) . The terms (occurring within the atomic
formulas) play no role here, and need not be interpreted.

T h e o r e m (GSde l - H e r b r a n d - Skolem)

For each closed formula F in Skolem form, F is satisfiable if and only if
the set of formulas E(F) is satisfiable (understood as a set of formulas in
propositional logic).

P roof : It suffices to show that F has a Herbrand model if and only if E (F)
is satisfiable. Let F have the form F = VyaVy2 .. . VynF*. Then we get:

.A is a Herbrand model for F

iff for all tl , t 2 , . . . , tn E D(F),

�9 A[y,/tll[y2/t2l...[y./t.l(F*) : 1
iff for all t l, t 2 , . . . , t,~ E D(F),

A(F*[y, ltl][y2/t2] . . . [Ynltn]) = i

iff for all G E E(F) , .A(G)= 1

iff .A is a model for E(F) .

(translation lemma)

This theorem says, in a sense, that predicate logic can be "approximated"
by propositional logic. The formula F in predicate logic is associated with
E(F) , a collection of formulas in propositional logic. The cardinality of
E (F) in general is infinite. But by enumerating bigger and bigger finite
subsets of E(F) , F can be approximated (or better: the question of F ' s
satisfiablity can be approximated).

The issue of finite subsets of infinite sets of formulas in propositional
logic brings up the possibility of applying the compactness theorem proved
in Section 1.4. This is done in the following theorem.

Herbrand ' s T h e o r e m

A closed formula in Skolem form is unsatisfiable if and only if there is a
finite subset of E(F) which is unsatisfiable (in the sense of propositional
logic).

76 C H A P T E R 2. P R E D I C A T E L O G I C

Proof : A direct combination of the previous theorem and the compactness
theorem for propositional logic (Section 1.4). �9

Based on Herbrand's theorem, so-called semi-decision procedures for
predicate logic can be formulated. A semi-decision procedure for a problem
(as introduced in Section 2.3) is understood as a program that stops exactly
for those instances after finitely many steps for which the question has to
be answered "yes".

The following is a semi-decision procedure for the unsatisfiability prob-
lem. Its correctness follows immediately from Herbrand's theorem. For the
presentation of the program, we think of the formulas in E (F) as being
enumerated:

E (F) = { F I , F2, . . . , Fn, . . .)

Because Gilmore was one of the first to implement a simple semi-decision
procedure for predicate logic based directly on Herbrand's theorem, we call
the following procedure G i l m o r e ' s procedure.

G i l m o r e ' s P r o c e d u r e

I n s t a n c e : A closed formula F in Skolem form (every formula
in predicate logic can be transformed into a s-equivalent
formula of this kind, cf. Section 2.2).

n := 0;

r e p e a t n := n + 1;

u n t i l (F1AF2A. . .AFn) is unsatisfiable (this can be tested with
the tools of propositional logic, e.g. using truth tables) ;

output "unsatisfiable" and halt;

This program has the property that it stops after finitely many steps on
every unsatisfiable formula as input, and for satisfiable formulas, it does
not stop. This is exactly what is needed for semi-decidability: on the "yes-
instances" the program stops, but not on the "no-instances." By testing
~ F for unsatisfiability, we obtain a semi-decision procedure for validity.
Therefore, we can summarize:

2.4. HERBRAND'S THEORY 77

T h e o r e m

1. The unsatisfiability problem for formulas in predicate logic is semi-
decidable.

2. The validity problem for formulas in predicate logic is semi-decidable.

E x e r c i s e 73: Show that the notion of semi-decidability introduced here
is equivalent to the notion of recursive enumerabili~y. A set M (the set of
yes-instances of a given problem) is recursively enumerable if M = 0 or if
there is a total function f which is effectively computable such that M =
{f(1), f(2), f (3) , . . . } . In the example above, the set M would be the set of
unsatisfiable formulas in predicate logic.

E x e r c i s e 74: Show that a problem is decidable if and only if it is recursively
enumerable (see last exercise) in such a way that the enumerating function
is nondecreasing: f (n) ~ f (n -t- 1) for all n.

E x e r c i s e 75: Show that the PCP (see Section 2.3) is semi-decidable.

Combining the unsatisfiability test and the validity test, we can obtain a
procedure which stops on the unsatisfiable formulas and on the valid formu-
las (with respective output "unsatisfiable" or "valid"). Furthermore, one
could patch a third procedure which on a given input formula F system-
atically searches for models of finite cardinality n - 1, 2, 3, Combined
this gives a procedure that stops after finitely many steps when applied to
formulas in the marked areas - with corresponding output.

78 CHAPTER 2. PREDICATE LOGIC

I /
/ /
/ /
I /
/ /
/ /
/

all formulas in predicate logic

satisfiable,but not
valid formulas

with infinite models , /

,,// /
, /

satisfiable, but not
valid valid formulas unsatisfiable

formulas with finite models formulas

The white area in the diagram could be reduced further somewhat (e.g. for
formulas of certain syntactical properties), but it can never be eliminated or
become finite. This would be in contradiction to the undecidability result
proved in Section 2.3.

2.5 R e s o l u t i o n

The tests for unsatisfiability on the finite subsets of E(F) which have to
be performed in Gilmore's procedure could as well be implemented by res-
olution. For this, we have to presuppose that the matrix of F is in C N F .
(This can always be achieved, see Sections 1.2 and 2.2). All formulas in
E(F) result from certain substitutions for the variables in F*. Therefore,
all formulas in E(F) are in C N F provided that F* is in C N F .

If a formula G results from certain substitutions from a formula F, then
G is called an instance of F. Substitutions which make a formula variable-
free (like in the definition of E(F)) are called ground substitutions, and the
result of applying a ground substitution to a formula is a ground instance
of that formula. Thus, the following modification of Gilmore's procedure is

2.5. RESOLUTION 79

called the ground resolution procedure. Its correctness follows immediately
from the correctness of Gilmore's procedure.

In the following, we assume again that E(F) is enumerated as F1, F2,
(Remember that Res*() was defined in Section 1.5.)

G rou n d Reso lut ion Procedure

Instance: a closed formula F in Skolem form
with its matrix F* in C N F

i := 0;
M := q);
r e p e a t

i : = i + 1 ;
/ := M U { F / } ;
M := Res*(M);

unti l D E M;
Output "unsatisfiable" and halt;

Combining Herbrand's Theorem and the resolution theorem of propo-
sitional logic, we obtain the following theorem.

T h e o r e m

Using as input any closed formula F in Skolem form where the matrix F*
is in C N F , the ground resolution procedure stops after a finite number of
steps if and only if F is unsatisfiable.

Similar to the resolution algorithm in propositional logic, it is usually the
case that more elements are generated in M than are really needed for
the "demonstration" of unsatisfiability of the input formula F (and in the
case of a satisfiable formula as input, in general infinitely many elements
are generated in M). Relevant for the demonstration of unsatisfiability are
such formulas occurring in the resolution graph of the first finite subset of

80 CHAPTER 2. PREDICATE LOGIC

E(F) which is unsatisfiable. For such a "demonstration" of unsatisfiability
of F, it suffices to specify certain ground substitutions for F* first (leading
to certain elements of E(F)) and then to present a resolution proof based
on these ground instances.

E x a m p l e : Consider the following unsatisfiable formula

F = W (P (~) ^ -~P(f(~))) .

Here we have,
F* = (P(~) ^ -~P(f(~))) ,

which is written in clause form,

F" = { {P (~) } , { -~P(f (~))}} .

Furthermore,

E(F) = {(P(a) A --',P(f(a))), (P(f (a)) A ~P(f (f (a)))) , . . .}.

Already the first two ground substitutions [z/a] and [z/f(a)] lead to a finite
unsatisfiable clause set. This corresponds to the first two formulas in E(F),
which form four clauses as listed below.

{P(a)} (-~P(f(a))} (P(f(a))} {~P(f(f(a)))}

In this example, already two clauses are generated (as part of the first and
second formulas in E(F)) which are not needed for the resolution refutation.
Therefore, we conclude that it suffices to consider ground substitutions that
are applied individually to the clauses of the original formula F*.

We express this situation by the following diagram where vectors are
used to express (ground) substitutions.

2.5. RESOLUTION 81

clauses in F*

ground substitutions

certain ground instances

of the clauses in F*

resolution of the
empty clause

{P(*)} {-~Ptf(*))}

[~//(~)]

{P(f(a))} {--,P(f(a))}

[~,/,:,]

Let us consider a more complex example. Let

F = VxVy((--,P(z) V ~P(f(a)) V Q(y)) A P(y) A (~P(g(b, z)) V--,Q(b))).

Then we obtain the following clause representation of F*,

F* = {{--P(z), ~P(f(a)), Q(y)}, {P(y)}, {---,P(g(b, x),--,Q(b)}}.

This formula F is unsatisfiable. A proof for the unsatisfiability of F is given
by the following diagram.

{~P(x),--,Pq f(a)), Q(y)} ~ {--,P(g(b, z.)), --Q(b)}

I~/,co)] [~/b] [~/s 7 k~~cb, ~)1 [~/<

{--,P(f(a), Q(b)} {P(f(a))} { P (g (b , ~ a)), -,Q(b)}

[]

Again, vectors denote ground substitutions. In this example two new as-
pects occur. First, it might be necessary to use the same clause in F*

82 C H A P T E R 2. P R E D I C A T E L O G I C

to derive several ground instances from it to enable the resolution refuta-
tion. (This is the case for the clause {P(P)}). Second, from an n-element
clause an try-element clause can be obtained after the ground resolution step
(m ~_ n). We get m < n if certain literals in the original clause become
identical after the substitution, and by the set representation melt into a
single element. (This is the case for the clause { ~ P (z) , ~ P (f (a)) , Q(v)}
and the substitution [z / f (a)] [y / b]) .

We summarize our observations in the following theorem.

Theorem (ground resolution theorem)

A closed formula F in Skolem form F = VyIVy2...Vyk F* with its matrix
F* in CNF is unsatisfiable if and only if there exists a finite sequence of
clauses CI, C2,..., Cn with the properties

C, is the empty clause, and for i- I,..., n,

either Ci is a ground instance of some clause C E F*,
i.e. Ci has the form Ci = C [y ~ / t l] [y 2 / t 2] . . " [Yk/tk]
where t l , t2, . . . , tk E D (F) ,

or Ci is a resolvent (in the sense of propositional logic)
of two clauses Ca and C~ with a, b < i.

Exercise 76: Formalize the following statements 1 and 2 as formulas in
predicate logic

(a) The professor is happy if all his students like logic.

(b) The professor is happy if he has no students.

and show, by ground resolution, that (b)is a consequence of (a).

The algorithmic selection of ground instances of F* which allows one to per-
form a resolution refutation afterwards, does not seem to be programmable
in a "controlled" way, just by exhaustive search. The problem is that cer-
tain decisions for substitutions have to be done in a "lookahead" manner
to enable resolution steps further "down" in the resolution graph. This

2.5. RESOL UTION 83

difficulty suggests a modification, namely not to perform all substi tutions
in the beginning, but rather in a successive "on demand" manner. Here,
the demand comes from the resolution step that directly follows. But this
requires that resolution steps be performed with clauses in predicate logic.

Now we introduce the predicate logic version of resolution which was
invented by J. A. Robinson. The new idea is to resolve clauses in predicate
logic to clauses in predicate logic where each resolution step is accompa-
nied by a substitution. These substitutions are performed in a guarded
manner. For example, in the case of the two clauses {P(x) , -~Q(g(x))} and
{-~P(f(y))} , it suffices to use the substi tution [z/ f(y)] to obtain the resol-
vent {-~Q(g(f(y))}. There is no need at this point to substi tute anything
for the variable y.

Central for the following investigations is the search for a substi tut ion
which unifies two or more literals, i.e., makes them identical. In the above
example, [x/f(y)] unifies the two literals P(x) and P(f (y)) . The substitu-
tion [x/f(a)][y/a] would also be a unifier but does not satisfy the definition
of a mos~ general unifier. In a sense (defined formally below), this substi-
tut ion makes more substitutions than necessary.

D e f i n i t i o n (unifier, most general unifier)

A substi tut ion sub is a unifier for a (finite) set of literals L = { L1, L 2 , . . . , Lk },
if Ll sub - L2sub - . . . - Lksub.

That is, by applying sub to every literal in the set L, one and only one
literal is obtained. If Lsub expresses the set obtained by applying sub to
every literal in the set L, then this situation can be formally expressed by
[Lsub[- 1. If a substi tut ion sub exists with the property that I L s u b l - 1,
then we say L is unifiable.

A unifier sub for some literal set L is called a most general unifier if for
every unifier sub' there is a substi tut ion s such that sub'=sub s. (Here, the
equality sub'=sub s means that for every formula F, Fsub '=Fsub s).

The following diagram describes the situation.

84 C H A P T E R 2. P R E D I C A T E L O G I C

sub

S

Uni f i ca t ion T h e o r e m (Robinson)

Every unifiable set of literals has a most general unifier.

P roo f : We prove this theorem constructively in the sense that an algorithm
is presented, which takes as input a set of literals L, and terminates after
finitely many steps either with the output "unifiable" or "non-unifiable".
Further, in the case of unifiability, it also outputs a most general unifier. A
proof of correctness of such an algorithm is also a proof for the assertion of
the theorem. Now we describe this algorithm.

Unification A l g o r i t h m

Instance: A non-empty set of literals L.

sub := []; (this is the empty substitution)
whi le ILsub[> 1 do

begin
Scan the literals in Lsub from left to right, until the first
position is found where in at least two literals (say, L1 and
L2) the corresponding symbols are different ;
if none of these symbols is a variable t h e n

output "non-unifiable" and halt
else

beg in
Let �9 be the variable, and let t be a term that is
different from x and which starts at this position
in another literal (this can also be a variable) ;
if x occurs in t t h e n

output "non-unifiable" and ha l t ;
else sub := sub[x/t];

(this means the composition of the sub-
stitutions sub and [z/t])

2.5. RESOL UTION 85

e n d
end ;

output sub as a most general unifier of L ;

For the correctness of this algorithm, we first observe that it always ter-
minates, because in each application of the whi le loop another variable
x is subst i tuted by a term t (in which x does not occur). Therefore the
number of different variables occurring in Lsub decreases by 1 in each step.
Hence there are at most as many applications of the wh i l e loop as there
are different variables in L in the beginning.

If the algorithm terminates successfully and leaves the wh i l e loop, then
the output sub must necessarily be a unifier for L, because the wh i l e loop
is only left if ILsubl = 1. Since we have shown that the algorithm always
terminates, in case of a non-unifiable clause set L as input, the algorithm
necessarily has to stop inside the whi le loop and outputs correctly "non-
unifiable".

It remains to show that in case of a unifiable set of literals L as input,
indeed a mosl general unifier is produced. Let subi be the substi tut ion
which is obtained after the ith application of the wh i l e loop. Then we
have subo=[]. We show by induction on i that in case of a unifiable set of
literals L, for every unifier sub' of L, there is a substitution si such that
sub' - subi si, and that the wh i l e loop is either successfully left in the i-th
step, or both e lse branches in the whi le loop are entered (in which case
the w h i l e loop can be executed for another time.) From this, it follows
that the wh i l e loop is finally left successfully, say after the n-th loop, and
the output subn satisfies the definition of a most general unifier.

If i = 0, then we let So = sub'. Then we have sub'=so=[]So=subo So.

For i > 0, let s/-1 be the substitution which exists by induction hypoth-
esis with sub' - s u b i _ l S i _ l . Now, either]Lsubi_ll - 1, and the wh i l e loop
is left successfully, or ILsubi_ll > 1 and the whi le loop is entered for the
i-th time. By the fact that ILsubi_11 > 1 and since subi_l can be extended
to a unifier of L by applying si-1, there must exist some variable x and
a different term t (at a position where two literals L1 and L2 in Lsubi_l
differ) so that x does not occur in t. Therefore both else branches will be
entered. Hence, si-1 unifies x and t, i.e. xsi_l - t s i - 1 . Furthermore, subi
is then set in the i-th loop to subi_l[x/t]. Now we modify the substi tut ion
si-1 so that we take out any replacement for the variable x (but all other
substi tut ions in si-1 remain.) Let the result of this restriction be si. We

86 CHAPTER 2. PREDICATE LOGIC

claim that si has the desired properties. We have

subisi - ~ b i _ l [, / t] ~ i
= ~ b ~ _ ~ , ~ [, / t ~]
= s u b i _ l s i [z / t s i _ l]
: s u b i - l S i - 1

--. s B b t

because z is not substituted in si
because z does not occur in t

because xS~_ l = ts~_ l
and the definition of si

by induction hypothesis

This completes the proof of the unification theorem.

E x a m p l e : We want to apply the unification algorithm to the set of literals

L - {--,P(f(z, g(a, y)), h(z)), ~P(f (f (u , v), w), h(f(a, b)))).

Then we obtain in the first step

~P(f (z , g(a, y)), h(z))
~P(f (f (u , v), w), h(f(a, b)))

T

which results in the substitution sub - [z/f(u, v)]. In the second step, after
applying sub, we obtain:

~P(f (f (u , v), g(a, y)), h(f(u, v)))
~P(f (f (u , v), w), h(f(a, b)))

T

Therefore, the substitution is extended by [wlg(a , y)]. Next, we obtain

~P(f (f (u , v), g(a, y)), h(f(u, v)))
~P(f (f (u , v), 9(a, y)), h(f(a, b)))

T

Now sub is extended by [u/a]. In the fourth step

-~P(f(f(a, v), g(a, y)), h(f(a, v)))
~P(f (f (a , v), g(a, y)), h(f(a, b)))

T

we obtain the final substitution sub - [zlf(u, v)][wlg(a, y)][u/a][v/b]. This
is a most general unifier for L, and we have

Lsub - {~P(f (f (a , b)), g(a, y)), h(f(a, b)))}.

2.5. R E S O L U T I O N 87

Observe that sub is not a ground substitution for L since the variable y still
occurs in Lsub.

In some situations, it is desirable to write down substitutions in a "disen-
tangled" way so that all partial substitutions can be applied in any order -
or in pa ra l l e l - without changing the result. A disentangled version of the
above substitution sub is

sub - [z / f (a , b)][w/g(a, y)][u/a][v/b].

E x e r c i s e 77: Show how for two disentangled substitutions sub and sub ~,
their concatenation sub sub ~ can be disentangled again.

E x e r c i s e 78: Apply the unification algorithm to the set of literals

L = { P (x , y) , P (f (a) , g (x)) , P (f (z) , g (f (z))) } .

E x e r c i s e 79: Show that the unification algorithm (implemented in a
straightforward way) can have exponential running time.

Hint: Consider the example

L - { P (x l , x 2 , . . . , X n) , P (f (X o , X o) , f (X l , X l) , . . . , f (x n - I , X n - 1))) .

Think of a data structure for literals and sets of literals which allows a more
efficient implementation of the unification algorithm.

E x e r c i s e 80: In some implementations of the unification algorithm (e.g.
in interpreters for the programming language PROLOG), by efficiency rea-
sons, the test "does x occur in t" is left out (the occurrence check).

Give an example of a 2-element set L = {L1, L2} which is not unifiable.
Let L1 and L2 have no variables in common, and (still!) a unification

88 CHAPTER 2. PREDICATE LOGIC

algorithm without occurrence check gets into an infinite loop (or erroneously
outputs that L is unif iable- depending on the implementation).

Using the unification principle, we are now in a situation to formulate
the resolution principle for predicate logic.

Def in i t i on (resolution in predicate logic)

Let C1, C~ and R be clauses (in predicate logic). Then R is called a resolvent
of C1, C2 if the following holds.

1. There exist certain substitutions sl and s2 which are variable renam-
ings so that Cls l and C2s2 do not contain the same variable.

2. There is ase t ofliterals Lx, . . . ,Lm E Cxsl (m >__ 1) and L ~ , . . . , L ' , E
C2s2 (n >_ 1), such that L -- {L1,L2,... ,Lm,L'I,L'2,..., L~} is unifi-
able. Let sub be a most general unifier for L.

3. R has the form

R - - ((C 1 8 1 - {L1, . . . ,Lm})U (C2s2 - { L i , . . . ,L '}))sub.

We express the situation described by the definition by the following dia-
gram.

c ,j2
R

For better legibility, the literals L1 , . . . , Lm,L'I,. . . , L" can be underlined,
and the substitutions used can be noted beside the diagram.

2.5. RESOLUTION 89

E x a m p l e :

{P(f (x)) , - ,Q(z) , P(z)} {-~P(z), R(g(x), a)}

" N f

a) }

R e m a r k : The resolution calculus in propositional logic can be understood
as a special case of resolution in predicate logic where sl = s2 = sub = []
and m = n = 1. Therefore, we adopt the notation introduced for the
resolution in the propositional calculus, and extend the notion Res(F) also
for clause sets in predicate calculus:

Res(F)

Res~
Res"+l(F)

and

Res*(F)

- F U { R I R i s a r e s o l v e n t

of two clauses C1, C2 E F},

- F ,

- = > 0,

U Res"(F).
n > 0

As in propositional logic, it is clear that [] E Res* (F) if and only if there is a
sequence C1, C2 , . . . , Ca of clauses such that Ca - 0, and for i - 1, 2 , . . . , n,
Ci is either element of F or Ci is resolvent of two clauses Ca and Cb with
a,b< i.

Exerc i se 81: Find all resolvents of the following two clauses C1 and C2.

Cl - {--,P(x, y), ~P(f(a), g(u, b)), Q(x, u)}

C2 ~ - {P(f (z) , g(a, b)),--,Q(f(a), b), ~Q(a, b))

As preparation for the proof of the resolution theorem, we show how
resolutions in propositional calculus (for ground instances of clauses in pred-
icate logic) can be "lifted" to certain resolutions in predicate logic. This

90 C H A P T E R 2. P R E D I C A T E LOGIC

"Lifting-Lemma" allows us to transform a resolution refutation on clauses
in propositional logic to a resolution refutation on clauses in predicate logic.

L i f t i n g - L e m m a

Let C1, C2 be two clauses in predicate logic und let C~, C~ be two arbitrary
ground instances thereof which are resolvable (in the sense of propositional
logic). Let R' be a resolvent of C~, C~. Then there exists a clause R which
is resolvent of C1, C2 (in the sense of predicate logic) so that R' is a ground
instance of R.

The following two pictures demonstrate the situation.

C1 C2

cl

R'

A s s u m p t i o n of t he L i f t i n g - L e m m a

CI C2

R

R'

Conc lus ion of the L i f t i n g - L e m m a

2.5. RESOL UTION 91

Proof i First, let 81 and s2 be variable renamings such that Clsl and C2s2
do not have a variable in common. Since C~ and C~ are ground instances
of C1 and C2, they are also ground instances of Cls l and C2s2. Let subl,
sub2 be ground substitutions such that C~=Clslsubl and C~=C2s2sub2.
Since there is no variable which is replaced in both substitutions subl and
sub2, we let sub=sublsub2, and we get C[=Clsisub and C~=C2s2sub. By
assumption, C~ and C~ have some resolvent R' (in propositional logic).
Therefore, there must be a literal L E C~ such that L E C~ and R' =
(C~ - {L})U (C~ - {L}). The literal L results from one or more literals in
Clsi by the ground substitution sub. The same holds for L and C2s2. Hence
there are literals L i , . . . , L , , 6 Cis~(m > 1) and L ~ , . . . , L ~ E C2s2(n > 1),
such that L - Llsub - . . . - L,,sub and L - Flsub - . . . - L~sub.
Therefore, ClSl, C2s2 (and also C1, C2) are resolvable, because sub is a
unifier for the set of literals

L - {Li , . . . , Lm,L~ , . . . ,L ' } .

Let subo be a most general unifier for L provided by the unification algo-
rithm. Then,

R - ((C , , , - { L 1 , . . . , L ~ }) u (C , , , - { L i , . . . , L ' })) ,ub0

is a (predicate logic) resolvent of Cis i , C2s2 (and also of Ci, C2). Since subo
is a most general unifier and sub is a unifier of L, there exists a substitution
s such that subo s=sub. Therefore, we get

R' - (c~ - {L}) u (c~ - {z})

= (c ~ ~ b - {L})u (c ~ ~ b - {L})

= ((c ~ - { L ~ , . . . , L ~ }) u (c ~ - { L ~ , . . . , L ' })) ~ u b

= ((C ~ - { L ~ , . . . , L ~ }) u (C ~ - { L ~ , . . . , L'}))~ub0~

: Rs

This shows that R' is a ground instance of R (via the substitution s).

Exerc i se 82: Consider the following ground resolution.

92 CHAPTER 2. PREDICATE LOGIC

{ P (x , y) , P (f (a) , z) } {-~P(f(~), g(y)), Q(~, y)}

[~/.f(a)]
[y/g(b)]
[~/g(b)]

[~/~]
[y/b]

{P(f (a) , g(b))} {~P(f (a) , g(b)), Q(a, b)}

{Q(~,b)}

Follow the proof of the Lifting Lemma, and find out which (predicate logic)
resolution step is constructed from this.

R e s o l u t i o n T h e o r e m (of predicate logic)

Let F be a closed formula in Skolem form with its matr ix F* in C N F .
Then, F is unsatisfiable if and only if 0 E Res* (F*).

P r o o f : (Correctness) First we show that [3 E Res*(F*) implies tha t F is
unsatisfiable. For a formula H with the free variables xl , x 2 , . . . , x , let VH
denote its universal closure. This is the formula VH = VxxVx2. . .VxnH.
Note that F -- ACeF* VC. Now we show that for every resolvent R of two
clauses C1, C2, VR is a consequence of VC1A VC2. Then, it follows that the
empty clause is a consequence of F , and therefore, F is unsatisfiable.

Let Jt be a structure such that ~(VC1) = A(VCz) = 1. Let the resolvent
R have the form

R - ((c , ~ , - { L , , . . . , L ~ }) u (C ~ - { L i , . . . , L ' })) ~ b

= (C ~ ~ b - { L }) u (C ~ 2 ~ b - {~}),

where sub is a most general unifier of L - { L 1 , . . . , Lm, L~, . . . , L~ }, and L
= L l s u b - . . . - L m s u b - L ~ s u b - . . . - L~sub. Assume t h a t . A (V R) - 0.
Then there exists a structure A' with j t ' (R) - 0, where ,4' is the same as
jr, but additionally has suitable interpretations for the variables tha t occur.
Then we have . 4 ' (C l s l s u b - { L }) - 0 and .4 ' (C2s2sub-{L}) - O. Because
of 1 - A'(ClSlSub) - .4'(C2s2sub), it follows that J t ' (L) - j t ' (L) - 1.
This is a contradiction which shows that jt(VR) - 1.

2.5. RESOL UTION 93

(Completeness) Suppose that F is unsatisfiable. Using the ground res-
olution theorem, there is a sequence of clauses (C~, C~, . . . , C ') such that
C" = [3, and for i= 1, 2 , . . . , n, C' either is ground instance of some clause
in F* or C~ is a (propositional logic) resolvent of two clauses C" and C~
with a, b < i. For i - 1, 2 , . . . , n we now construct a sequence Ci of pred-
icate logic clauses where Cn - [] which demonstrates that [] 6 Res*(F).
If C' is a ground instance of some clause C 6 F*, then we choose Ci = C.
If C~ is resolvent of two clauses C" and C~ with a, b < i, then we have
already determined the clauses Ca and Cb such that C" and C~ are ground
instances thereof. By the Lifting Lemma, we can find a clause Ci which
is resolvent of Ca and Cb, and such that C' is ground instance of Ci. The
sequence (Cl, C2 , . . . , C,,) that is obtained shows that [3 6 Res* (F). �9

Example : The clause set

F ._. { {-~P(x), Q(x), R(x, f(x))}, {-~P(x), Q(z), S(f(x))}, {T(a)},

{P(a)}, {~R(a, z), T(z)}, {~T(x),~Q(x)}, {-~T(y),-~S(y)}}

is unsatisfiable. A deduction of the empty clause is given by

(1) {T(a)} clause in F

(2)

(3)

(4)

(5)

(6)

(7)

(s)

(9)

(10)

(11)

(13)

{--,T(x), ~Q(x)}

{-~Q(a)}

{~P(x), Q(x), s (f (x))}

{P(a)}

{-~P(x), Q(x), R(x, f(x))}

{Q(a), R(a, f(a))}

{R(a,f(a))}

{~R(a,z) ,T(z)}

{T(f(a))}

{-~T(y),-~S(y)}

clause in F

resolvent of (1) and (2)

clause in F

clause in F

 olvent of (4) (5)

resolvent of (3) and (6)

clause in F

resolvent of (5) and (8)

resolvent of (3) and (9)

clause in F

resolvent of (10) and (11)

clause in F

94 CHAPTER 2. PREDICATE LOGIC

(14) {--,S(f(a))}

(15) D

resolvent of (12) and (13)

resolvent of (7)and (14)

Exerc i se 83: For finite clause sets F in propositional logic, Res*(F) is
always a finite set. Show that there are finite clause sets F in predicate
logic such that for all n,

Res" (F) =/= Res* (F).

Example" To demonstrate the use of the resolution calculus for automated
theorem proving, we consider the following example from group theory. Let
o be the group operation. By P(x, y, z) we express that x o y - z. Then
the axioms of group theory can be expressed by the following formulas.

(1) VxVy3zP(z, y, z)
(closure under o)

(2) VuVvVwVzVyVz((P(z, y, u)AP(y, z, v))--4 (P(x, v, w) ~ P(u, z, w)))
(associativity)

(3) 3x(VyP(x, y, y) A Vy3zP(z, y, x))
(existence of a left-neutral element
and existence of left-inverses)

Now we want to prove that the existence of right-inverses follows from (1),
(2), and (3). This is expressed by the following formula (4).

(4) 3x(VyP(x, y, y) A Vy3zP(y, z, x))

Converting (1) A (2)A (3)A-,(4) into clause form gives

(~) {P(~, u, m(~, v)}

(b) {~P(~, u,-), ~P(u, ~, ~), ~P(~, ~, w), P(~, ~, w)}

(c) {--,P(x, y, u), --,P(y, z, v), --,P(u, z, w), P(x, v, w)}

(d) {P(e, y, y)}

2.5. RESOLUTION 95

(e) { P(i(y), y, e) }

(f) { -~P(x , j (x) , j (x)) ,~P(k(x) , z , x) }

Here, m (2-ary), e (0-ary), i (1-ary), and k (1-ary) are newly introduced
Skolem functions. A resolution refutation from (a)-(f), and therefore, a
proof of unsatisfiablity is given by the following diagram (which happens
to be a linear chain).

(f) (d)

{-~P(k(e),z,e)}
/ / (b)

{-~P(x, y, k(e)), -~P(y, z, v), -~P(x, v, e)}

~ (e)

{-~P(i(v), w, k(e)), -~P(w, z, v)}

/ (d)

{-~P(i(v),e,k(e))}

~ (~)

{-.P(i(t). y. ~). -,P(y. ~, ~), -,P(u, ~, k(~))}
/ (d)

{-,P(i(t). y. ~). -,P(y. k(~). ~) }
/ / (~)

{-~P(i(t), i(k(e)), e)}
/ (~)

Cl

Exerc i se 84: Show that the following are consequences of the above men-
tioned axioms of group theory.

96 CHAPTER 2. PREDICATE LOGIC

(a) There exists a right-neutral element.

(b) If G is an Abelian group, then for all x, y in G, x o y o x - 1 - - y .

Exerc i se 85: Express the following facts by formulas in predicate logic.

(a) Every dragon is happy if all its children can fly.

(b) Green dragons can fly.

(c) A dragon is green if it is a child of at least one green dragon.

Prove by resolution that the conjunction of (a),(b) and (c) implies: all green
dragons are happy.

Exerc i se 86: Given are the following facts.

(a) Every barber shaves all persons who do not shave themselves.

(b) No barber shaves any person who shaves himself.

Formalize (a) and (b) as formulas in predicate logic. Use B(x) for "x is
barber", and S(x, y) for % shaves y". Convert into clause form and show
by resolution that (c) is a consequence of (a) and (b).

(c) There are no barbers.

2.6 R e f i n e m e n t s of R e s o l u t i o n

Although the predicate logic version of resolution constitutes a great im-
provement as compared to the straightforward ground resolution procedure,
there is a tremendous combinatorial explosion with which one has to deal.
The problem is that, in general, there are many possibilities to find two
resolvable clauses for producing new resolvents. Among this huge number
of possible resolution steps, only a few might lead to the derivation of the
empty clause (in case the clause set is unsatisfiable). Additionally, while

2.6. REFINEMENTS OF RESOLUTION 97

the resolution process proceeds, the number of clauses (and their lengths)
increases further, which causes still more choices to be tried.

We now present some possibilities of improving the efficiency of the
general resolution algorithm. We call these refinements of resolution. We
distinguish between strategies and restrictions.

Strategies are just heuristic rules which prescribe the (deterministic)
order through which the (nondeterministic) search space has to be explored.
Hence, the size of the search space is not affected by a strategy. But for a
clever strategy, there is some hope that only a small portion of the space
has to be searched until a solution (a derivation of the empty clause) is
found. In the worst case, the entire space has to be searched.

An example is the unit preference strategy where, whenever possible,
resolution steps are performed when one of the parent clauses is a unit, i.e.
consists of one literal only.

These strategies seem to work quite well in the examples studied, but
there is little theoretical work which can be reported here. We just mention
that such strategies can be combined with the resolution restrictions which
will be discussed next.

The resolution restrictions however simply forbid certain resolution
steps if the clauses involved do not have a certain syntactic form, depending
on the type of restriction. Therefore, the number of possible choices for the
next resolution step is smaller as compared to the general case. Of course,
the question to be investigated is whether such restrictions go "too far",
so that the calculus loses the completeness property. (This would be the
case if there is an unsatisfiable clause set such that the empty clause is not
derivable under the respective restriction).

We now present the different resolution restrictions that we will study
in the following.

The P-restriction (or just P-resolution) requires that at least one of
the parent clauses has to be positive, i.e., consists of positive literals only.
Analogously, the N-restriction (N-resolution) requires that at least one par-
ent clause is negative. We will later show that P-resolution as well as N-
resolution are complete.

The empty clause is linearly resolvable from a clause set F, based on a
clause C E F, if there is a sequence of clauses (Co, Cx , . . . , Cn) such that
Co = C, Cn = t::l, and for i = 1, 2 , . . . , n,

98 CHAPTER 2. PREDICATE LOGIC

Ci-1 Bi-1

G

where the clause Bi-1 (the so-called side clause) is either an element of F
(i.e. an input clause) or Bi-1 = Cj for some j < i.

We will show in this section that linear resolution is complete, that is,
for every unsatisfiable clause set F there is a clause C E F (called the base
clause) such that the empty clause is linearly resolvable from F based on
C.

E x a m p l e : Consider the unsatisfiable clause set

F = {{A, B}, {A,-~B}, {~A, B}, {--,A,--B}}.

The usual resolution refutation is given by the following diagram and takes
3 resolution steps.

{a, B) {A,-,B} {--,a, B} {-,A,-,B)

A linear resolution of the empty clause from F, based on {A, B}, is
given by the following diagram (this is also an example for a P-resolution).

2.6. REFINEMENTS OF RESOLUTION 99

{A, B } {A,-~B} {-~A,B} {-~A,~B}

/

}

\

o

Observe that this resolution refutation consists of 4 resolution steps. This
suggests that the price to be paid for the restriction in the number of
nondeterministic choices is an increase in the proof length. This effect is
not yet theoretically explored (cf. Exercise 87).

For the set-of-support restriction of resolution one needs to know (e.g.
from the context) a subset T of the clause set F such that F - T is satis-
fiable. A resolution deduction of the empty clause from F, relative to the
set-of-support T, has to satisfy the requirement that it is never the case
that two clauses from F - T are being resolved. This restriction can bring
an advantage if T is relatively small (e.g. I T I - 1) and therefore, F - T is
relatively big. Many potential resolution steps (between clauses in F - T)
can be avoided this way. A typical example is to test whether a given
formula G follows from the "data base" (F1, F2,...,F,}. We know that
this is the case if and only if the set (F1, F 2 , . . . , F, , -~G} is unsatisfiable
(Exercise 3). If it is known from the context that (F1, F2,..., F,} is satis-
fiable, i.e., the data base (or axiom system, if you prefer) is consistent - or
if this consistency is just assumed, then one can choose as set-of-support
T--- (G 1 , . . . , Gk} where (G ~ , . . . , Gk} is the clause representation of-~G.
We will see later that the set-of-support restriction of resolution is complete.

100 CHAPTER 2. PREDICATE LOGIC

The input-restriction of resolution (or just input resolution) requires
that in each resolution step, one of the parent clauses has to be an "input",
i.e. an element of the original clause set F. It is easy to see that an input
resolution proof necessarily is a linear resolution proof. But in contrast to
linear resolution, input resolution is not complete. The above discussed
unsatisfiable clause set

F = {{A, B}, {A,-~B}, {-~A,B}, {~A, ~B}}.

is a simple counter example. In this example, the first resolution step
produces a clause with a single literal. Each further step produces then, by
the input restriction, single element clauses. Therefore, the empty clause
is not derivable by input resolution. But, we will later see that input
resolution is complete when restricted to clause sets which contain only
Horn clauses.

Another incomplete resolution restriction is unit resolution. Unit reso-
lution is also complete for Horn clauses (see also Exercise 35). It is only
allowed to produce a resolvent if at least one of the parent clauses is a unit,
i.e. contains only a single literal. This resolution restriction has the advan-
tage that the size of the produced resolvents decreases as compared with
the parent clauses. Hence, unit resolution is working towards producing the
empty clause which has size 0. The incompleteness of unit resolution can
be seen by the same counter example as for input resolution, and this is not
mere accident: It can be shown that a clause set has an input resolution
refutation if and only if it has a unit resolution refutation (cf. Exercise 91).

We finally proceed to the SLD-resolution (SLD = linear resolution with
selection function for definite clauses). This restriction is only defined for
Horn clauses. This resolution restriction plays an important role in logic
programming which will be discussed in more depth in the next chapter.
SLD-resolutions are both input and linear resolutions which have a special
form. The base clause must be a negative clause (a so-called goal clause),
and in each resolution step, the side clause must be a non-negative input
clause. (A non-negative Horn clause is also named a definite clause or a
program clause).

For example, let F = {C1, C2,.. . ,Cn, NI , . . . ,Nm} be a set of Horn
clauses where C1, C2 , . . . , Ca are the definite clauses and N 1 , . . . , N , , are
the goal clauses. An SLD-resolution of the empty clause must then have the
form, for a suitable j E { 1 , . . . , m} and for a suitable sequence il, i 2 , . . . , il E
{ 1 , . . . , n } .

2.6. REFINEMENTS OF RESOL UTION 101

C~j.
Ci2 �9

e l ! �9

[3

The clauses represented by dots, i.e. the "intermediate results", can only be
negative clauses, because they result from resolution of a negative and a def-
inite Horn clause. That means, SLD-resolutions are always N-resolutions.
Furthermore, SLD-resolutions are set-of-support resolutions where the set-
of-support is { N 1 , . . . , g m } (cf. Exercise 39). W e will show that SLD-
resolution is complete for Horn clauses.

R e m a r k : In the abbreviation SLD (linear resolution with selection func-
tion for definite clauses), the additional aspect of a selection function is
mentioned. In our present definition, we ignore this aspect of selection,
but come back to this point in the investigations of Section 3.3. There,
the presence of a selection function (which selects the next definite clause
to be resolved with) is treated as combination of SLD-resolution with a
special strategy (see the discussion at the beginning of this section). Here,
we treat SLD-resolution as identical with LUSH-resolution (LUSH = linear
resolution with unrestricted selection for Horn clauses).

All of the completeness proofs for these resolution restrictions are shown
for the propositional case first, that is, for the ground instances of the pred-
icate logic clauses. Just as in the proof of the general resolution theorem
of the last section, the Lifting Lemma is used to convert resolution refuta-
tions for ground instances to resolution refutations for the original clauses

102 CHAPTER 2. PREDICATE LOGIC

in predicate logic. We have to check that the Lifting Lemma does not
change the structure of a resolution proof. It is easily seen that a P-, N-
etc. resolution is still a P-, N- etc. resolution after application of the Lifting
Lemma. To prove completeness of a resolution restriction, we have to mod-
ify the proof of the resolution theorem in propositional logic (see Section
1.5) according to the respective restriction.

As preparation for the following proofs, we introduce the following no-
tation. For a (propositional logic) clause set F and a literal L occurring
in F, we let FL=O be the clause set which is obtained from F by canceling
every occurrence of L within the clauses of F, and for every occurrence
of L in a clause in F, the whole clause is eliminated from F. Similarly,
FL=I is defined by interchanging the roles of L and L. In other words,
FL=a, a E {0, 1}, is obtained from F by fixing the assignment .A(L) - a
and performing obvious simplifications. From this, it is clear, that the
unsatisfiability of F implies the unsatisfiability of FL=O and of FL=I.

T h e o r e m

The P-restriction of resolution is complete.

Proof." As observed above, it suffices to prove the theorem for propositional
logic. Let F be an unsatisfiable set of clauses. By the compactness theorem,
we can assume that F is finite. We show by induction on the number of
different atomic formulas occurring in F, that the empty clause is deductible
from F by P-resolution.

If n - 0, then F - {D}, and there is nothing to prove.

Now let n > 0 and assume that F contains n atomic formulas. Pick any
one of those, say A. Then both clause sets Fa=o and FA=I are unsatisfi-
able and contain at most n - 1 atomic formulas. By induction hypothesis,
there are resolution refutations for FA=O and for FA=I satisfying the P-
restriction. Now we insert the literal A in all those clauses in FA=O again,
where it was canceled before, and also in all the respective resolvents. The
above resolution of the empty clause from FA=o then turns into a resolu-
tion of {A} from F. This is still a P-resolution since A is a positive literal.
Next, we add resolution steps which resolve the so-obtained clause {A}
with every clause in F which contains -~A. These resolution steps are also
P-resolutions. Now we have all clauses from FA=I available. Therefore,
we attach the P-resolution refutation building upon FA=I, which exists by
induction hypothesis, and obtain altogether a P-resolution refutation of F.

2.6. R E F I N E M E N T S OF RESOLUTION 103

T h e o r e m

The N-restriction of resolution is complete.

P r o o f : Swap in the above proof all occurences of "positive" by "negative",
of A by --,A, of FA=O by FA=I (and vice versa). �9

T h e o r e m

Linear resolution is complete. (More precisely: For every unsatisfiable
clause set F there is a clause C E F such that the empty clause is lin-

early resolvable from F, based on C).

P r o o f : Let F be unsatisfiable. By the compactness theorem, we can as-
sume tha t F is finite. Let F ~ be a minimally unsatisfiable subset of F (i.e.
F ~ is an unsatisfiable subset of F, and every proper subset of F ~ is satisfi-
able. F ~ can be constructed from F by successively canceling clauses from
F until any further canceling of a clause causes satisfiability of the resulting
clause set).

Now we show that every clause in F ~ can be used as base clause to allow
a linear resolution refutation. The proof is by induction on the number n
of atomic formulas occurring in F ~. Let C be an arbitrary clause in F ~. If
n - 0, then F ~ - {[3} and C - rq. There is nothing to show.

Now we come to the induction step. If F ~ contains n > 0 atomic for-
mulas, then we consider two cases.

Case 1" I C] - 1.

In this case, C - {L) for some literal L. Then the clause set F~= 1 is
unsatisfiable and contains at most n - 1 different atomic formulas. Let
F It be a minimally unsatisfiable subset of F~= 1. Then we claim that F "
must contain a clause C ~ such that C~12 {L) E F ~. Tha t means, C ~ was
obtained from a clause in F by canceling L. Such a clause C ~ must exist
in F " because otherwise F " would be a subset of F ~ - {C}, and therefore
would be satisfiable (because F " was chosen minimally unsatisfiable). By
the induction hypothesis, there is a linear resolution of the empty clause

from F " , based on C ~. From this linear resolution proof we construct the

desired linear resolution of the empty clause from F ~, based on C - {L}, as
follows. The first resolution step resolves the base clause C - {L} with C~t.J
{L}. Therefore, the resolvent is C ~. Then we attach the above resolution
refutation, but take the original clauses from F instead, i.e. possibly with
the literal L which was canceled in F ~. The literal L also appears in the

104 CHAPTER 2. PREDICATE LOGIC

respective resolvents, and instead of deducing the empty clause, we obtain
{L} at the end of the linear chain. A final resolution step resolving {L}
with the base clause C - {L} gives the empty clause.

Case 2: IC] > 1.

In this case, we choose an arbitrary literal L E C and let C ' - C - {L}.
Then, F~= 0 is unsatisfiable and C' is a clause in F~;=0. We claim that F~;=0
is satisfiable. To see this, let ,4 be a model for F ' - {C}. Then, .A(C) - 0,
because A(F ') - 0, by unsatisfiability of F' . Therefore, .A(L) - 0, because
L E C. From this, we obtain A(F~;=0 - {C}) - 1.

Now let F" be a minimally unsatisfiable subset of F~;=0. As we have
just seen, F" must contain C' (because canceling C' from F" would cause
satisfiability). We can apply the induction hypothesis on F". Therefore
there exists a linear resolution of the empty clause from F", based on C ~.
In this resolution proof, we add the literal L at every place where it was
canceled before (also in the respective resolvents). Then we obtain a linear
resolution of {L} from F' , based on C.

Now we observe that (E ' - {C})U {{L}} is unsatisfiable and F ~ - {C}
is satisfiable. Using Case 1, there exists a linear resolution of the empty
clause from (F ' - {C}) U {{L} }, based on {L}. Attaching this resolution
proof behind the above constructed resolution which yields {L}, we obtain
the desired resolution of the empty clause from F' , based on C. �9

Exerc i se 87: Let F be the unsatisfiable clause set built up from the atomic
formulas A x , . . . , An such that F contains all m = 2 n clauses of the form
{ B 1 , B 2 , . . . , B , } with Bi E {Ai,- ,Ai}. The usual resolution refutation (in
form of a complete binary tree) has m - 1 resolution steps. Find recursions
for the number of resolution steps constructed by the induction proofs for
completeness of linear and of P-resolution. Compare this number with
m - 1 .

T h e o r e m

The set-of-support restriction of resolution is complete.

Proof." This follows from the completeness of linear resolution. Let F be
an unsatisfiable clause set, and let T C_ F be a set-of-support, i.e., F - T
is satisfiable. A minimally unsatisfiable subset of F has to contain at least

2.6. R E F I N E M E N T S OF RESOL UTION 105

one clause C E T, because F - T is satisfiable. Using the previous proof, it
follows that there is a linear resolution of the empty clause from F, based
on C. This is also a set-of-support resolution with set-of-support {C}, and
therefore also with set-of-support T. �9

Exerc i se 88: Show that by combining two complete resolution restrictions,
in general, one loses completeness. Give an example of an unsatisfiable
clause set and two complete resolution restrictions (e.g. P-resolution and
N-resolution) such that the empty clause cannot be derived by satisfying
bo~h restrictions.

Now we turn to the resolution restrictions which are incomplete in the gen-
eral case. Here we obtain immediately the following theorem (cf. Exercise
35).

T h e o r e m

Unit resolution is complete for the class of Horn clauses.

Proof." Since P-resolution is complete in the general case, it is also complete
for the special case of Horn clauses. But positive Horn clauses must be units
(i.e. consist of a single literal). Therefore, it immediately follows that unit
resolution is complete for Horn clauses. �9

T h e o r e m

SLD-resolution is complete for the class of Horn clauses.

P roo f : Let F be an unsatisfiable set of Horn clauses. Such a set must
contain a negative clause (otherwise let .A(A) = 1 for every atomic formula
A in F, then A would be a model for F). Furthermore, if F ' is a minimally
unsatisfiable subset of F, then there must be a negative clause C in F ' . By
completeness of linear resolution, there is a resolution of the empty clause
from F ' (hence from F), based on C. This linear resolution chain must
have the form of an SLD-resolution. First, it is based on a goal clause,
namely C. Further, all resolvents must be negative clauses, therefore the
side clauses can only come from F, and must be definite clauses. �9

106 CHAPTER 2. PREDICATE LOGIC

E x e r c i s e 89: Prove the completeness of SLD-resolution for the class of
Horn clauses directly, i.e. without referring to the completeness of linear
resolution.

Hint: Imagine the process of the marking algorithm for Horn clauses
discussed in Section 1.3. and "simulate" it backwards in terms of SLD-
resolution steps. Another possibility is to use (a generalization of) Exer-
cise 38.

T h e o r e m

Input resolution is complete for the class of Horn clauses.

P roof : SLD-resolutions are also input resolutions.

E x e r c i s e 90: Show that the completeness of input resolution follows just
as easily from the completeness of N-resolution. �9

E x e r c i s e 91" Show that for every clause set F, F has an input resolution
refutation if and only if F has a unit resolution refutation.

E x e r c i s e 92: Show that resolution remains complete if no resolution step
is allowed where one of the parent clauses is a tautology. A clause is a
tautology if and only if it contains an atomic formula together with the
complement of this atomic formula.

E x e r c i s e 93: If, in a resolution step, only one literal in each parent clause
is used for unification, then we call this binary resolution. (In other words,
in the definition of a resolvent in predicate logic, m = n = 1).

Show by a counter example that binary resolution in general is incom-
plete. Show further that binary resolution is complete for Horn clauses.
Furthermore, for Horn clauses it remains complete if combined with any of
the other complete resolution restrictions for Horn clauses.

2.6. REFINEMENTS OF RESOLUTION 107

(Actually, it is this combination of binary resolution and SLD-resolution
which plays a special role in the next chapter).

R e m a r k : We have made an effort to use the possibilities which the semi-
decidability of predicate logic offers; that is, the possibility of obtaining
automated theorem proving procedures. But practical experience with such
procedures (which might involve trickier techniques than those we discuss
here) shows that they are not yet able to prove complicated theorems - o r
to substitute for mathematicians.

It might be the case that the approach is too general. If

M = {F1,F2,...,F,~}

is an arbitrary set of axioms, and if it has to be tested whether the formula
G is a theorem of the theory Cons(M), in principle, resolution can do the
job. One has to test whether {F1 , / ' 2 , . . . , Fn,'-,G} is unsatisfiable. Very
often, the interest is concentrated on very special theories, so that M is
fixed, and only G varies.

In this case, it might be better to develop calculi which are directly
tailored for the particular theory (but only applicable for that theory). Such
a calculus, in a sense, incorporates more knowledge about the particular
theory than the pure resolution calculus.

Chapter 3

L O G I C
P R O G R A M M I N G

3.1 A n s w e r G e n e r a t i o n

In this section we show that the execution of a program can be understood
as the automated deduction of the empty clause from a given unsatisfiable
clause set (possibly using the resolution refinements from Section 2.6). A
further concept is needed: how to generate an answer, a result of the com-
putat ion, from the resolution proof. A resolution proof as such shows only
that the empty clause is derivable; an answer, in a sense, explains how it
is obtained. The following ideas of extracting an answer from a resolution
proof have their roots in the works of Green and Kowalski.

Suppose a satisfiable set of clauses F is given. We can interpret F as
a (logic) program: In F certain predicates and function symbols occur;
and by the clauses in F, certain assertions about the relationships of the
predicate and function symbols are made. In a sense, the general context
of the problem to be solved is specified.

Let us consider the following simple example (here we use for better
understanding more intuitive names for the occuring symbols than P, f ,
and a, etc.).

F __ { {likes(Eve, Apples)},
{ likes(Eve, Wine) },
{ likes(Adam, x),-~likes(x, Wine)} }

109

110 C H A P T E R 3. LOGIC P R O G R A M M I N G

Here, likes is a binary predicate symbol, and Eve, Apples, Wine, Adam are
constants. This clause set F can be interpreted as

"Eve likes apples"
"Eve likes wine"
"Adam likes everybody who likes wine"

This can be thought of as a specification of the general problem context (in
this case, not a very profound one). A call of this logic program might be
given by the formula

G -- 3y likes(Adam, y).

This can be interpreted as the question: "Is there anybody whom Adam
likes?", and fu r the rmore - this is the aspect of answer gene ra t ion - "Who
is this?"

It is typical for such a formula as G which serves as the program call (or
query) to contain an existential quantifier. We expect to receive from the
system (the logic program evaluator) not only the answer yes or no, but in
case of yes we additionally expect the presentation of such an object (or all
such objects) whose existence is claimed.

In the terminology of the excursion in Section 2.3, the logic program
F can be thought of as being an axiom system for some theory Cons(F)
(here the "theory of Adam and Eve"), and the question G to be answered
corresponds to the question whether G is a theorem of Cons(F). In other
words, we want to know whether G is a consequence of F . We can verify
this using resolution by checking whether there is a resolution refutation of
F A ~G. We have

F A -,G - { { tikes(Ev , Appt)},
{ },
(likes(Adam, x), ~likes(z, Wine)},
{- tik (Adam, y)} }.

A derivation of the empty clause from this clause set is given by the
following diagram.

3.1. ANSWER GENERATION 111

{~likes(~

{-~likes(~

idam, y)} { ~ A d a m , x), -~likes(x, Wine)}

/ / / , . b = [./,]
,, wi~) } { t ~ E ~ , win~) }

Indeed, the empty clause is derivable. Therefore, the clause set is unsat-
isfiable. This means that G is a consequence of F . Therefore, there is
somebody whom Adam likes. But who? This can be seen from the substi-
tutions which are performed on the variable in the query clause, namely y.
The variable y is subst i tuted by Eve in the second resolution step. Therefore

the answer is Eve.

A possibility to make this substi tution process t ransparent is to intro-
duce an answer predicate. Instead of the clause {-~likes(Adam, y)} tha t
stems from the query formula G, we now use

{-~likes(Adam, y), ANSWER(y) }.

Now our aim is not to derive the empty clause, but to derive a clause that
consists of (one or more) answer predicates only. In our example, we get:

{-~likes(Adam, ~ I, ANSWER(y)} { likses(Adam , x), -~likes(x, Wine)}
I

{~likes(y, Wine

{ A NS W~

I /
I
ANSWER(y)} {likes(Eve, Wine)}

Another example with a more complex answer is the following.

{ {likes(Eve, Apples)},
{likes(Eve, Wine), likes(Lucy, Wine)),
{ t~k~(Adam, ~), -~t~k~(~, W~n~)),
{-~likes(Adam, y), ANSWER(y)) }

An interpretat ion of this clause set is

112 CHAPTER 3. LOGIC PROGRAMMING

"Eve likes apples"
"Eve or Lucy (or both) like wine"
"Adam likes everyone who likes wine"

and the query clause containing the answer predicate can be interpreted as

"Who does Adam like?"

An answer generation using resolution looks like this:

{-~Z~k~(Ad~m, y), AIVSWEn(y)} {t~k~,(Ad~m, ~),-~t~k~,(~, W~)}

~, Wi~), lik~,(L~y, Wi~)}

{ANS En(E~), ANSWER(L~y)}

This means that Adam likes Eve or Lucy (or both). Notice that the reso-
lution proofs can always be so arranged that they are linear resolutions, as
above, with the query clause as base clause (cf. Section 2.6).

This more complicated situation that the answer consists of an or of two
possibilities was enforced by the situation that the logic program contained
the clause {likes(Eve, Wine), likes(Lucy, Wine)}. In general, this situation
is possible whenever the logic program contains a clause with more than
one positive literal, i.e., a clause that does not have the Horn form.

Another possibility for this to happen is when the query formula, after
transforming it to clausal form, splits in more than one clause. Each of
these clauses then contains the answer predicate. This is one of the reasons
that PROLOG insists of using only Horn clauses, and only one query clause.

3.1. A N S W E R GENERATION 113

We will discuss in the next sections how the answer generation process
for the special case of Horn clauses can be designed, using the resolution re-
strictions from Section 2.6 and further special evaluation strategies tailored
for these restrictions.

Consider the query clause

{-~likes(Eve, z) , A NS WER(z) }

which is in words,

"Is there anybody or anything that Eve likes, and if so, output
such an object z".

Here we obtain two possible deductions of the empty clause (or the pure
answer clause) and therefore two possible answers.

{~likes(Eve, z) ,AgSWER(z) } {likes(Eve, Apples)}

{ ANS WER(A pples) }

and

{-~likes(Eve, z) ,ANSWER(z)} {likes(Eve, Wine)}

{ANSWER(Wine)}

This means that z -- Apples and z = Wine are both possible answers. In
this case, the and-combination of two answers is expressed by the situation
that there are two possible resolution proofs.

E x e r c i s e 94: Modify the above example so that exactly one of Eve and
Lucy likes wine. Then apply again the answer generation process.

R e m a r k : Consider a set of clauses F (which can now also be called logic
program) and let P be a predicate symbol occurring in F (e.g. likes in the

114 CHAPTER 3. LOGIC PROGRAMMING

above example). For simplicity, suppose P is binary. Then, a typical query
formula has the form

G = 3z P(t, z)

for some variable-free term t (for example, t = A dam). This formula G leads
to the query clause {-~P(t,z)} or {-~P(t,z),ANSWER(z)}. This situation
can be thought of as if t is the actual input parameter and z is the output
parameter. After evaluation of the logic program F with the query clause
we expect the result of the computation to be substituted for the variable
z. Our formalism permits an input parameter transfer and an output pa-
rameter transfer. Both are accomplished by the substitutions done by the
unification algorithm (as a "subroutine" of the resolution algorithm). More
precisely, the input parameter transfer is achieved by the substitutions for
the variable(s) in the logic program F, and the output parameter transfer
by the substitutions for the variables occurring in the query clause (i.e. in
the answer predicate).

Notice that the same logic program F can be used with different query
clauses, for example

{-~P(z', t'), ANSWER(z')}.

Here the roles of input and output parameter are interchanged. Now the
question is not what Eve likes (apples and wine), but who likes Eve (Adam).
We say, the parameter passing process is invertible.

The next example is the monkey-and-banana problem. Here the function
symbols are used as operators on a certain state space which characterizes
the relative situation of the monkey, the chair, and the bananas. The
aim of the computation is to find a series of applications of the available
"operators" to transform a starting state into a desired end state (where
the monkey has reached the bananas). Consider the following clauses

(1) {P(a,b,c,d)}

Interpretation: "In the start situation d the monkey is in posi-
tion a, the banana is hanging above position b, and the chair is
at position c." (Here a, b, c, d are constants).

(2) {--,P(x,y,z,s),P(w,y,z, walk(x,w,s))}

"If, in some situation s, the monkey is in position x, then an
application of the function walk(x, w,s) has the effect that the

3.1. A N S W E R GENERATION 115

monkey is afterwards in position w. In other words, the mon-
key is able to walk to any position." (Here, ~, y,z, s, w are
variables).

(3) {-~P(x, y, x, s), P(w, y, w, push(x, w, s))}

"If the monkey is at the same position as the chair, namely x,
then he can push it to any position w."

(4) {-~P(x, y, x, s), P(x, y, x, climb(s))}

"If the monkey is at the chair, then he can climb the chair."

(5) {~P(x, x, x, climb(s)), Reach(grasp(climb(s)))}

"If the monkey has climbed the chair, and if the position of
monkey, chair, and banana coincide, then the monkey can reach
the banana by grasping it."

The clauses describe the problem context and are considered as the logic
program. Now consider the question

3z Reach(z),

which means in words: "Is there a situation in which the monkey has
reached the b a n a n a - and how to achieve it?" Again, we negate the question
and transform it into clause representation, including the answer predicate,
and obtain

(6) {-~Reach(z), ANSWER(z)} .

A resolution proof of the pure answer answer clause is given by the following
sequence C 1 , . . . , C5 with

Cx = {'~P(x, ~, x, climb(s)), ANSWER(grasp(climb(s)))}

(resolvent of (5) and (6))

C2 - {~P(x, x, x,s) , ANSWER(grasp(climb(s)))}

(resolvent of (4) and Cx)

C3 - {-~P(x, y, x, s), ANSWER(grasp(climb(push(x, y, s))))}

(~o1~r of (3) ~ d c~)
c~ = {-~p(~, y, z, ~), AYSWER(g~p(~l imb(p~h(~, y, ~ lk (~ , z, ~)))))}

(resolvent of (2) and C3)

c~ = { A g s w z R (g ~ a ~ p (d ~ b (p ~ h (~ , b, ~Zk(a, ~, d)))))}
(r ~ o l ~ t of (1) ~ d C~)

116 CHAPTER 3. LOGIC PROGRAMMING

Interpretation of the answer: "Starting from the situation d, walk from a
to c, push the chair from c to b, climb the chair, and grasp the banana."

E x e r c i s e 95: Six coins are lying on the table in the following order

head head head tail tail tail

In one move, two adjacent coins may be turned. We search for a sequence
of moves which transfers the coins into the situation

tail head tail head tail head

Formulate a logic program to solve this puzzle.

E x e r c i s e 96: Three young women with their three jealous boy friends
want to drive to the beach. They have a sports roadster available with two
seats. How can they arrange the drives to the beach so that at no moment a
woman is together with another man - except her own boy friend is present?

E x e r c i s e 97: Formulate the following puzzle in predicate logic clauses,
and use the answer generation method to solve it:

Tom, Mike, and John are members of the alpine club. Each member of
the alpine club is either skier or climber or both. No climber likes the rain
and all skiers like the snow. Mike likes everything that Tom dislikes, and
vice versa. Mike and John like the snow.

Is there a member of the alpine club who is climber but no skier, and
who is this?

E x e r c i s e 98: Consider again the theorem proving example on group the-
ory from Section 2.5. Use the answer generation method to find out subse-
quently how the right inverses have to be chosen.

3.2. HORN CLAUSE PROGRAMS 117

3.2 Horn Clause Programs

In the following, we consider logic programs (sets of clauses) that are re-
stricted to the Horn form. There exists a well established theory for logic
programs of this form. The programming language PROLOG is based on
Horn clauses. There are several reasons for this restriction to Horn form.

First, most of the mathematical theories seem to be axiomatizable in
terms of Horn formulas (provided they are axiomatizable at all). Many
examples in this book (e.g. the monkey-and-banana problem) turn out to
be in Horn form. Therefore, imposing the Horn form restriction does not
seem to be a real restriction in practice.

Second, allowing clauses that are not Horn leads to more complicated
answer situations. We have discussed this in terms of some examples in the
last section. This is one of the reasons why there is no developed theory
of answer generation (or, logic programming) for the general case. (Notice,
we did not prove any theorems about correctness or completeness of the
answer generation process in the last section).

The third reason is efficiency. In the propositional logic case, we have
seen there are efficient algorithms for testing satisfiability of Horn formulas
(Section 1.3 and Exercise 35), in contrast to the exponential algorithms
in the general case. Certain aspects of efficiency are still present when
we consider the case of Horn formulas in predicate logic. (Although, the
undecidability result from Section 2.3 is still valid, even for the special case
of Horn formulas).

In particular, it is the completeness of SLD-resolution for Horn clauses
that is attractive here since SLD-resolution proofs have the nature of a
sequential computation. In a sense, the input of such an SLD-computation
is the base clause (the query clause), and the computation is successful
and leads to a result if the empty clause is derivable. In view of this
computational (or procedural) interpretation of SLD-resolution proofs, we
distinguish between the following types of Horn clauses.

Clauses that consist of a single positive literal are called fac~s in the
following. Such a clause can be interpreted as the claim of a simple positive
statement.

Procedure clauses have the form {P,-~Q1,. . . ,-~Qk} where P, Q1, . . . ,Qk
are certain atomic formulas of predicate logic. The notation in PROLOG,
namely

P : - Q 1 , Q 2 , . . . , Q k .

shows the character of an implication (cf. Exercise 3). The symbol : -

118 CHAPTER 3. LOGIC PROGRAMMING

stands for an implication sign pointing to the left. Here, P is called the
procedure head, and the sequence Q 1 , . . . , Qk is called the procedure body.
A single Qi is considered as a procedure call.

The intended meaning here is that to satisfy the procedure body P, it
suffices to perform the procedure calls Q 1 , . . . , Qk successfully. We will see
later that this conception is closely related with an SLD-resolution refuta-
tion.

Notice that facts can be considered to be special cases of procedure
clauses (with k = 0, i.e. there is no procedure body).

A Horn clause program (or in the following simply logic program) con-
sists of a finite set of facts and procedure calls. An element of a logic
program is also called program clause or definite clause.

Finally, a logic program is called or activated by a goal clause. A goal
clause (also called query clause) is a Horn clause too, but one containing
negative literals only. Such a clause has the form {~Q1,-~Q2,. . . , -~Qk }, or
in the PROLOG notation,

? - Q 1 , Q 2 , . . . , Q k .

Referring again to the intuitive interpretation mentioned above, this nota-
tion suggests that a goal clause is a sequence of procedure calls which is to
be satisfied successfully.

In this context the empty clause [] is called the halting clause. It can
be considered to be the special case of a goal clause (with k = 0) where all
procedure calls are successfully performed.

In each resolution step, it is required that the variables of the two parent
clauses are being renamed so that they are disjoint (these are the substitu-
tions Sl and s2 in the definition of resolution, cf. Section 2.5). Obviously,
it suffices to rename the variables in only one of the parent clauses (i.e.
set Sl=[]). In the following SLD-resolution refutations we assume that
renamings are performed for the program clauses only (which are the side
clauses in the terminology of SLD-resolution, cf. Section 2.6), not in the
goal clauses. We call this a standardized SLD-resolution.

E x a m p l e : Consider the following recursive definition of the addition (let-
ting y' denote the successor of y)"

x + O = x

3.2. HORN CLAUSE PROGRAMS 119

�9 + r (. + y) '

Formulated in predicate logical clauses, we obtain:

(1)
(2)

{A(x,O,x)}

{A(x, s(y), s (z)) , -A(x, y, z)}

Here A(z, y, z) means that z + y - z, and s represents the successor func-
tion. The clauses (1) and (2) constitute the logic program. A possible goal
clause could be

{-~A(~(~(~(0))), ~(~(0)), ~)},
in words: "Compute 3 + 2, and deliver the result in the variable u ' . A
standardized SLD-resolution proof is given by the following diagram (here,
z' is a new variable, obtained by renaming).

{-A(~(~(~(0))), ~(~(0)), ~)}
L /~ , .b , (2)

= [= / , (, (, (o)))] [y/,(o)] [~,/,,(~)]

{-~A(.(~(~(0))), .(0), z)}

[//~ / (2 /
�9 . b 2 = [= / , (, (, (o)))] [W o] k / . (~ ')]

{-~A(.(.(.(0))), 0, ~')}

I / (1)
,,.,b3 = [= / ~ (, (, (o)))] [~ ' / , (, (, (o)))]

[3

An answer, a result of the computation, can be obtained by applying the
computed most general unifiers sub1, sub2, sub3 to the original goal clause.
We obtain

{~A(s(s(s(O))), s(s(O)), u}sublsub2suba =
{-~A(~(~(~(0))), ~(~(0)), ~(~(~(~(~(0))))))}.

120 C H A P T E R 3. LOGIC P R O G R A M M I N G

To make it clearer what the result of the computation is, we can apply the
substitution sublsub2sub3 directly to the variable u occurring in the goal
clause.

usubxsub2sub3 - s(z)sub2sub3

= s(s(z'))sub3

=

In other words, the result is 5. This method of obtaining a result of the
computation by applying the most general unifiers to the variable(s) in the
goal clause is essentially identical with the method of introducing an an-
swer predicate as discussed in the last section. In this example we can see
that logic programs (in the pure form as described here) can only perform
symbol manipulations, not arithmetical computations, as in standard pro-
gramming languages. (We have obtained "s(s(s(s(s(0)))))" as result, not
"5"). A concrete logic programming language (like PROLOG) should ad-
ditionally support the possibility of evaluating arithmetical expressions (see
the discussion about the is predicate in Section 3.4). At the moment we
will not consider such non-logical aspects of a logic programming language.

E x e r c i s e 99: The logic program for addition described above can also be
used for subtraction. How?

E x e r c i s e 100: Add to the addition program further clauses which allow
one to compute the Fibonacci function. This is the function fib with

f i b (O) - 1

f i b (l) - 1

fib(n) - f i b (n - 1) + f i b (n - 2) for n > 2.

E x e r c i s e 101: Formulate a different logic program for addition which is
based on the following recursive presentation"

x + O - x

x + y ' - x~+y .

3.2. H O R N C L A U S E P R O G R A M S 121

Compute again what the result of 3 + 2 is.

E x e r c i s e 102: Ackermann's function is defined by the following equations.

a(O,y) -- y + l
a(x, O) -- a(x -- l, 1)
a(x, y) -- a(x -- l, a(x, y - 1))

f o r x > 0
for x ,y > 0.

For example, we have

a(1, 2) - a(0, a(1, 1)) - a(O,a(O,a(1, O)))

- a(0, a(0, a(0, 1))) - a(0, a(0, 2)) - a(0, 3)

- 4,

whereas a(4, 2) has more than 19000 decimal digits! Prove that this equa-
tional presentation of the function a is well defined, that is, each evaluation
of a(m, n) for m, n E IN ends in finitely many steps. Formulate a logic
program to compute Ackermann's function!

The concepts introduced so far in terms of several examples will now be
made more formal. Our aim is to define a rigorous formal semantics of
such logic programs. In the following definition the "procedural" aspect of
a logic program computat ion is emphasized.

D e f i n i t i o n (procedural interpretation of Horn clause programs)

The procedural interpretation of Horn clause programs is given by the pre-
sentation of an abstract interpreter for such programs. A configuration of
this interpreter is any pair (G, sub) where G is a goal clause and sub is a
substitution.

Let F be a logic program (set of definite Horn clauses). The transition
relation for configurations is then defined as follows.

if and only if G1 has the form

G1 - {-~A1, ~ A 2 , �9 � 9 -~Ak } (k _> I)

122 CHAPTER 3. LOGIC P R O G R A M M I N G

and there is a program clause

C = {B, ~C,, -~C2,..., ~C, } (~ > 0)

in F (after its variables have been renamed so that G, and C do not have
a variable in common) such that B and Ai for some i E { 1 , . . . , k } are
unifiable. Let a most general unifier be the subst i tut ion s. Then G2 has
the form

G2 = { - ~ A , , �9 � 9 - ~ A i - 1, - ~ C , , . . . , - ~ C , , ~ A i + , , �9 � 9 -~Ak } s

and sub2 has the form

sub2 - subx s.

A computation of F on input G = {-~A,,. �9 -~Ak } is a (finite or infinite)
sequence of the form

(G,[])~"F (G * , s u b *) ~ (G ~ ' s u b 2) l F "'"

If the sequence is finite, and the last configuration of it has the form ([9, sub),
then this computat ion is called successful, and in this case the formula
(A, A . . . A Ak)sub is called the result of the computat ion.

It can be seen tha t a successful computa t ion (restricted to the first compo-
nent of the configurations) is simply a SLD-resolution refutation of F U {G}
where G is the base clause. Additionally, in the second component of a con-
figuration, we keep track of the sequence of most general unifiers tha t have
been used so f a r - similar to the answer predicate method in Section 3.1.

Notice that computat ions of Horn clause programs are nondeterministic,
that is, each configuration can have more than one successor configuration.
The possible computat ions from a given input G can be represented as a
tree.

(G3, suba)

(G, , sub,)

etc.

(G, []) ~ F (G2, sub2) ~ (Gs, subs)

(G6, sub6)

3.2. HORN CLAUSE PROGRAMS 123

Not considering configurations that are different because of renaming of
variables, this tree has bounded degree, but it might contain infinite paths.

Example : Consider the following logic program

F = {{P(x,z),---,Q(x,y),--,P(y,z)},
{P(u,u)},
{Q(a,b)}}

which in PROLOG notation is

P(x, z) : - q(x, Y), P(Y, z).
p(~,~).
Q(a,b).

The goal clause G - {--,P(v,b)} (resp. ? - P(v,b)) as input leads to a
non-successful computation

({--,p(v,b)},[])
({~Q(~, y), ~P(y, b)}, [~/~][~/b])
({~P(b, b), }, [~/,][~/b][~/~][y/b])
({-~Q(b, y),--,P(y, b)}, [~l,,][~lb][,,la][ylb][~lb][~lb])

({-~Q(b, b)}, [zl,,][~lb][,,la][ylb][zlb][zlb][ylb])

which cannot be continued. Here the first, third, first, and second program
clause have been used in the SLD-resolution steps.

There are also two successful computations with different results. These
are

({--,P(v,b)},[])

({-~Q(v, y),---,P(y, b)}, [x/v][z/b])

({-~P(b, b)}, [x/vl[z/bl[v/a][y/b])

(n, [~lv][~lbl[vla][ylb][ulb])
and

({~P(~, b)}, [])

(o, [v/b]).

(with the 1.
program clause)

(with the 3.
program clause)

(with the 2.
program clause)

(with the 2.
program clause)

124 CHAPTER 3. LOGIC PROGRAMMING

The first computation leads to the result

P(v, b)[x/v][z/b][v/a][y/b][u/b] = P(a, b),

and the second,
P(v, b)[v/b] = P(b, b).

E x e r c i s e 103" Describe all computations that are possible under the logic
program

P(a,b).
P(x, y) :- P(y, x).

with the given goal clause ? - P(b, z).

E x e r c i s e 104: Which type of program clause can be considered as a re-
cursive procedure (in the sense of standard programming languages)?

E x a m p l e : Consider the following logic program that might be part of a
larger program for symbolic differentiation. This time we use the PROLOG
notation throughout. Here in this example, x and 1 denote constants,
A,DA,B,DB,C denote variables, and diff is a binary predicate symbol,
whereas sin, cos, +, �9 are function symbols. For better readability, we use
infix notation for + and �9 (that is, we write x + y instead of +(x, y)).

diff (x,1).
diff (A + B, DA + DB) :- diff (A, DA), diff (B, DB).
diff(A �9 B ,A �9 DB + B �9 DA) :- diff(A, DA), diff(B, DB).
diff(sin(A), cos(A). DA) :- diff(A, DA).

This logic program formalizes the fact that the derivative of x is 1. The
second, third, and fourth clause formalize the sum rule, the product rule,
and the chain rule (with respect to the sin function).

Consider the goal clause

7- �9 c) .

3.2. HORN CLAUSE PROGRAMS 125

In words: determine the derivative of x,s in(x) . The following computation
is successful and yields the desired result z,,cos(x)+sin(x) (in the redundant
form a~ �9 (cos(x) �9 1) + s in(x) , 1).

Here we have

Therefore,

(?- d~ff(~ �9 ,~n(~), c) , [])

(?- cliff(x, DA), diff(sin(x), DB), subl)

(? - diff(sin(x,), DB), sublsub2)

(?- diff(x, DA), Sublsub2sub3)

([3, sublsub2sub3sub4)

subx = [A/x][B/sin(z)][C/x, DB + sin(x) �9 DA]

sub2 = IDA~l]

sub3 = [A/x][DB/cos(x) , DA]

sub4 = [DA/1]

Csublsub2sub3sub4 - z �9 (cos(x) , 1) + s in(x) , 1.

E x e r c i s e 105: Write a logic program that simplifies formulas by eliminat-
ing useless multiplicative factors that are 1, and additive terms that are
0. (This program could be combined with the above program for differ-
entiation.) The program we are looking for should be able to perform the
following computation. Using as input the goal clause

?- ~impzify(~ �9 A + (B + (0 + ~)) �9 ~, C).

leads to the result

simplify(1 �9 A + (B + (0 + z)) �9 1, A + (B + z)).

E x e r c i s e 106: Prove the following variation of the Lifting L e m m a - tai-
lored for Horn clause computations: If

(G~b' , [])~}T "" i T (D, ~b)

126 CHAPTER 3. LOGIC PROGRAMMING

is a computation of the logic program F with the input Gsub ~, then there
is another computation of F (of same length) on input G that has the form

(o , . . .

such that for some suitable substitution s,

sub'sub = subHs.

Using the results from Section 2.6, it is immediately clear that F tO {G}
is unsatisfiable if and only if there exists a successful computation of F with
input G. This follows from the completeness of SLD-resolution (see also
Exercise 93), and involves the logical aspect of Horn clause computations.
But regarding the result of the computation, up to this point we are not able
to make a statement about the correctness of such computational results.
Neither do we know what the possible range of computation results is that
might occur at the endpoints of the nondeterministic computation paths.

Such a statement is justified by the following theorem which can be
understood as a strengthening of the correctness and completeness results
for SLD-resolution obtained in sections 2.5 and 2.6. The theorem says that
the obtainable computation results are as general as possible, that means
they contain as many variables as possible.

T h e o r e m (Clark)

Let F be a Horn clause program and let G = % A1, . . . , Ak be a goal clause.

1. (correctness property) If there is a successful computation of F with
input G, then every ground instance of the result (A1 A . . - A Ak)sub
is a consequence of F.

2. (completeness property) If every ground instance of (A1A.. .AAk)sub'
is a consequence of F, then there exists a successful computation of
F with input G with the result (A1 A . . - A Ak)sub such that for a
suitable substitution s,

(A1A. . .AAk)sub' = (A1A. . . AAk)subs.

3.2. H O R N C L A U S E P R O G R A M S 127

Proof." 1. The proof is by induction on the length n of the computation.

I n d u c t i o n Base: For n = 0 we have G = O and sub = [], and thus there
is nothing to prove.

I n d u c t i o n Step: Let n > 0 and consider a typical computation of length
n,

(G, [])tT (G1, ,~bi)~1-~---.. IT(o, ,~b~... ~b,) .

Here, s u b t , . . . , sub,, are the most general unifiers provided by the unifica-
tion algorithm. Let the goal clauses G and G1 have the form:

G - - ? - A i , . . . , A i - t , Ai , A i + t , . . . , A k (k >_ 1)

and

G1 = ? - (A t , . . . , A i - i , C I , . . . , Cz, A i + t , . . . , A k) s u b t .

There must be a program clause in F of the form that was used for this
first SLD-resolution step,

B :- C1,.. . ,C, (Z > 0)

such that {B, A i) is unifiable with some most general unifier subt . Now
consider the following computation of length n - 1:

(G,, [))~Fr-"'" F ~ (o, ,~b~.. . ,~b,).

By induction hypothesis, every ground instance of

(At A . . . A A i - 1 A C1 A . . . A C! A Ai+i A . . . A Ak) sub t . . . sub,,

is a consequence of F. In particular, the subformula

(C1 ^ . . - ^ C l) s u b l . . . sub,,

is a consequence of F. Since B : - C i , . . . , Ca is a program clause in F, and
by the observation that

B s u b i . . . s u b , = A i s u b i . . . s u b , , ,

it follows that every ground instance of A i s u b i . . . sub,, is a consequence of
F, and hence also every ground instance of

(Ai A .. . A Ai A . . . A A k) s u b i . . . sub , ,

is a consequence of F.

128 C H A P T E R 3. LOGIC P R O G R A M M I N G

2. Let xl, . . . ,x ,~ be all the variables occurring in Gsub', and let a t , . . . , a m
be new constants which did not appear yet. Define

G' -- G s u b ' [x i / a ,] . . . [Xm/am].

By hypothesis, F U {G'} is unsatisfiable, and by the completeness of SLD-
resolution (cf. Section 2.6, also Exercise 93), there is a successful computa-
tion of F of the form

(G', [])I-F'F "'" F~'--(El, ,ubz...subn).

Since G' does not contain any variables, G' - G 'subz . . . sub,. (That is,
the substitutions in subz . . , subn concern variables in the program clauses
only.) Now we substitute x z , . . . , zm for a l , . . . , a m in this computation,
and we obtain

(Gsub', [])F~" "'" ~"F (El, sub~...sub'n).

Here, except for the above substitution, sub~, . . . , sub~n is identical with
subz , . . . , subn. Therefore we have

Gsub t , , t
- Gsub sub1. . , sub..

Using the Lifting Lemma (cf. Section 2.5 and Exercise 106), the above
computation can be transformed into another computation of the same
length,

(G, [])I~--F "'" F]~'-'(O, sub~'.., sub~).
Here sub, t , . . . , sub~ are most general unifiers provided by the Lifting Lemma.
Then, for some suitable substitution s,

l l l I I I t
� 9 - - . . . s u b n 8 . sub sub x sub, sub 1

Therefore, letting s u b - sub~. . . sub~, we obtain

(A~ ^ . . . ^ A~)sub' = (A~ ^ . . . ^ A~)subs,

which completes the proof.

Next, we want to clarify what the semantics of a logic program is.
As in standard (operational) programming languages, there are different
approaches. First we give the definition of an interpretative or procedural
semantics. This approach focuses on the ides that a logic program is (or
induces) a parallel and nondeterministic process. The semantics of a logic

3.2. HORN CLAUSE PROGRAMS 129

program (together with a given goal clause as input) is the set of potential
computational results of this process (with the given input). To simplify
(and standardize) matters, we restrict ourself in the following to the ground
instances of the computational results.

Def in i t ion (procedural semantics)

Let F be a logic program and G a goal clause. The procedural semantics of
(F, G) is defined by the set of ground instances of the computation results
of F on input G which the abstract logic program interpreter can produce.
This is symbolically,

Sp~oc(F, G) = { H] there is a successful computation of F on
input G such that H is a ground instance of the
computation result }

Exerc i se 107: Show in detail what the procedural semantics of

P(a,a).
P(a,b).
P(*, v) :- P(v,

with the given goal clause

?- P(:, z), P(z,

is.

A second, quite different approach to define a semantics of logic pro-
grams starts out from the idea that the "meaning" (the denotation) of a
logic program F - together with a given goal clause G = ? - A1 , . . . , Ak is the
set of ground instances of (A1A.-.AAk) which are consequences of F. This
model theoretic approach is similar to the assignment of a theory Cons(F)
to a formula F (see Section 2.4). The theory Cons(F) associated with the
axiom system F can be thought of being the model theoretic semantics of
F.

130 C H A P T E R 3. L O G I C P R O G R A M M I N G

In contrast to the above idea that the logic program induces a dynamic
process, we have here the idea of a static data base. The semantics of a logic
program is declared as the set of formulas which is explicitly and implicitly
represented by the program, namely everything which follows from it.

D e f i n i t i o n (model theoretic semantics)

The model theoretic semantics of a logic program F and a given goal clause
G = .7- A 1 , . . . , A k is the set of ground instances of (At A- - -AAk) that are
consequences of F. In symbols,

Stood(F, G) = { H I H is a ground instance of (A1 A - . . A Ak)
and H is a consequence of F}.

E x e r c i s e 108: Find out what the model theoretic semantics of the example
in Exercise 107 is.

The following theorem asserts that procedural and model theoretic se-
mantics are equivalent. This can be understood as a reformulation of
Clark's Theorem.

T h e o r e m

For all Horn clause programs F and goal clauses G,

,gp,. o~ (F, G) = ,9,nod (F, a) .

P r o o f i (C) Let H E $v,oc(F, G). Then there is a successful computat ion
of F of the form

(G,[])

such that H is a ground instance of (A1 A ".. A Ak)sub. By Clark's The-
orem (part 1), it follows that H is a consequence of F . Therefore, H E

S od(F, G).

3.3. EVALUATION STRATEGIES 131

(2) Let H E Stood(F, G). Then H is a ground instance of (A1A---AAk)
and H is a consequence of F. By Clark's Theorem (part 2), it follows that
there is a computation of F of the form

(a, ~ ub)

such that H is an instance (in this case, a ground instance) of (A1 A - . . A
Ak)sub. Therefore, H E Sproc(F, G).

Exerc i se 109: We can associate with each logic program F a function
OpF that maps sets of atomic formulas into sets of atomic formulas.

OpF(M)- {A' I there exists a program clause C in F of
the form {A,-~B1,. . . ,-~Bk}, k > 0 such that
{A' , -~B~, . . . ,~B~} is a ground instance of C
and B [, . . . , B ~ is in M}.

Let OP~ M and Op~F+I(M)- OpF(Op~(M)) for n _> 0.

Prove that

Fp - U op (o)
n > 0

is the least fix, point of the operator OpF (with respect to C).

The fix.point semantics of F with given goal clause G - ? - A1 , . . . , Ak
is defined as

Sli~poi.t(F , G) = { H I H is a ground instance of(A1A---AAk)
and for all atomic formulas A in H, A E
FpF}.

Prove that Sfixpoint (F, G) -- Sproc (F, G).

3.3 Evaluat ion Strategies

Logic programs are nondeterministie, i.e. after each computation step there
can be more than one possibility for continuing the computation. For
every configuration (G, sub) there can exist finitely many configurations

132 CHAPTER 3. LOGIC PROGRAMMING

(G1, subl), (G2, sub2),... , (Gk, subk) such that for i = 1 ,2 , . . . , k, (G, sub)

Whenever nondeterministic programs have to be run on a real computer
operating deterministically and sequentially, this nondeterminism has to
be resolved in as efficient a way as possible. What is needed here is some
evalualion slrategy which determines in which order the nondeterministic
computation steps have to be performed.

Looking more closely, it can be seen that the nondeterminism in logic
programs occurs in two different forms: We distinguish in the following
between type 1 nondeterminism and type 2 nondeterminism.

Suppose, we have already selected a particular literal (i.e. a procedure
call) in the goal clause which is to be unified with some procedure head of
some program clause. If there are several such program clauses which can
be used to produce resolvents, we call this type 1 nondetevminism.

E x a m p l e : Consider the goal clause ? - A,B ,C . Suppose B is selected
as the next procedure call to be performed. Suppose the logic program
contains the program clauses

B : - D .
B.
B : - E , F .

Then this situation results in three potential SLD-resolvents, that is, in
three new goal clauses:

9.- A ,D,C.
?- A,C.
?- A ,E ,F ,C .

From these three possible continuations of the computation, only one, if
any, might be successful. Furthermore, even if there are several successful
computations, they might lead to different results. This freedom in the
choice of the next program clause constitutes the type 1 nondeterminism.

If the goal clause consists of n literals (i.e. procedure calls), then each of
these n literals can be used for unification in the next resolution step. This
gives n! many ways of evaluating such a goal clause. This freedom in the
choice of the literal in the goal clause constitutes the type 2 nondeterminism.

Let us consider the above example. We describe the situation by a tree
which expresses both types of nondeterminism.

3.3. E V A L U A T I O N S T R A T E G I E S 133

. 7 - A ,

? - A

? A o * * o ~ ~

B , C

, C

,F, C . . .

actual goal

type 2
nondeterminism

selection of next
procedure call

type 1
nondeterminism

new goal clause
after selection of
a p rogram clause

Next we show that the type 2 nondeterminism is not relevant and can
be evaluated in any order. Every evaluation strategy concerning type 2
nondeterminism leads to the same computation results (so called "don't
care" nondeterminism). That is, one loses no generality by fixing some
special evaluation strategy. E.g., at the branching points for the type 2
nondeterminism one can follow the leftmost branch only and ignore the
rest of the branches.

To justify this, we first show in a lemma that the evaluation order of
procedure calls is not relevant, and can be swapped without changing the
computation result.

Swapping Lemma

Consider two successive SLD-resolution steps

?-- AI,...,Ai,...,Aj,...,An

~ ~.~ B : - C 1 , . . . , C k

? - (A 1 , . . . , C , . . . , A j , . . . , A ,) s u b l

~ i s ~ D : - E 1 , . . . , E I

?- (A1, . . . , C, . . . , E , . . . , A n) s u b l s u b 2

Here C stands for C1 , . . . , Ck and E stands for E l , . . . , El. Then the order
of the resolution steps can be swapped:

134 C H A P T E R 3. LOGIC P R O G R A M M I N G

?-- A t , . . . , A i , . . . , A j , . . . , A ,

~ D : - E t , . . . , E l

?- A,, . . . , E, . . . ,

~ , , ~ B : - C t , . . . , C k

?- C, . . . ,E , . . . ,

Further, subx sub2 is identical with sub~sub~ (except for possible renamings
of variables).

P r o o f : First we have to show that the SLD-resolution steps can be per-
formed in swapped order.

Observe that Aisubtsub2 - Dsub2 - Dsubtsub2, since sub1 does not
affect any variables in D. Therefore, A i and D are unifiable, and the first
resolution step can be performed. Let sub~ be a most general unifier of A i
and D. Since subtsub2 is a unifier of {Aj , D) , there is a subst i tut ion s such
tha t subt sub2 - sub, s.

Further, we have Bs -- B s u b ~ s - Bsubtsub2 - Aisubtsub2 - Aisub~s.
(The first equality is true because sub~ does not affect any variables in B).
Therefore, {B, Aisub~} is unifiable using s. Hence the second resolution
step can be performed. Let sub 2 be a most general unifier.

It remains to show that sublsub2 and subtsub 2 ' ' are (essentially) identi-
cal. We show that there are substi tutions s' and s" such tha t subt sub2 -

Since sub~ is a most general unifier of {B, Aisub~}, and by the fact
tha t B s - Ai ' ' ' subis , there is a substi tut ion s' with s - sub2s. Therefore,
sub1 sub2 - sub, s - sub~ sub2s'.

Next we observe that Ai i i _ t t subtsub 2 Bsublsub2, and by the fact tha t
subt is a most general unifier of {Ai, B} , there is a subst i tut ion so such tha t
sub~sub~ - subtso. Now we have Ajsublso - Ajsub~sub~ - Dsub'l sub'2 --
Dsublso - Dso. (The last equality holds since subt does not affect the
variables in D). This means tha t so is a unifier of {Ajsubl , D}. By the fact
tha t sub2 is a most general unifier of {Ajsubl , D}, there is a subst i tut ion

8 t! s" such tha t so - sub2 . Put together, we obtain sub~sub~ - sublso -
" what was to be shown. �9 sub1 sub2s ,

3.3. EVALUATION STRATEGIES 135

Defini t ion

A computation of a logic program is called canonical if in each computation
step the first literal (i.e. the literal at the leftmost position) in the goal
clause is used for the resolution. (Notice that we consider clauses here as
sequences, not as sets, and presume an ordering of the literals in the clause).

T h e o r e m

Let (G , []) ~ - F . . . ~ F (n, sub) be a successful computation of the logic
program F. Then there exists a successful computation of F of same length
which is canonical and which obtains the same computation result.

P roof : We assume that the given computation is canonical up to the ith
computation step (i > 0). Now we show how to transform this computation
into one of same length with the same computation result that is canonical
up to step i + 1.

Assume that after i computation steps the configuration (H, sub) is
reached. Let H = ? - A1 , . . . ,Ak . The (i + 1)-th step is not canonical.
Therefore, some literal At, l > 1, is used for resolution in this step, whereas
this occurrence of literal A1 (or some instance of it) is used for resolution in
some later computation step, say j (j > i+ ~). Now we apply the Swapping
Lemma to the pairs of computation steps (j - 1,j), (j - 2, j - 1), . . . ,
(i + 1, i + 2) and obtain a computation which is canonical up to length i + 1.
(It is not wrong to be reminded of Bubble-Sort at this point). Successive
application of the above procedure makes the whole computation canonical.

The theorem asserts that it is allowed to restrict ourselves to computations
which are canonical. (In other words, this type of restriction is complete, cf.
Section 2.6). Of course, we still have to deal with the type 1 nondetermin-
ism. This theorem explains in retrospect what the S (for selection function)
in the abbreviation SLD exactly means. Under every selection strategy re-
garding the type 2 nondeterminism (for example, the "left to right" strategy
adopted in canonical computations) the SLD-resolution stays complete (for
the class of Horn formulas).

Observe that canonical SLD-refutations (or better: SLD-computations)
operate like nondeterministic pushdown automata: The content of the push-
down is the actual goal clause %A1, A2, . . . ,Ak where A1 is the top element.

136 CHAPTER 3. LOGIC PROGRAMMING

In each computation step, the top element A1 is popped from the stack, and
the procedure body C1 , . . . , Cn of some program clause B : - C1 , . . . , Cn is
pushed on the stack, provided Ai and B are unifiable. In contrast to push-
down automata, the most general unifier sub provided by this unification is
applied to the whole pushdown, so that the next goal clause has the form

?- 61 sub,... , C,~ sub, A2 sub,... , Ak sub.

A further aspect is that we keep track of the evaluated most general unifiers
in the second component of configurations so that we are able to specify
the computation result.

We represent the canonical computations of a logic program F on input
G as a tree where the root is labeled by the start configuration (G, []). The
sons of a father node labeled with (G', sub) are labeled with the successor
configurations of (G', sub) according to a canonical computation. For better
readability we often leave out the second components of configurations, and
just label a node by the corresponding goal clause.

Example : Consider the logic program

1. : - Q(y, y).
2.
3.

and the goal clause ?- Q(x, c). Then we obtain the following computation
tree (where we have additionally labeled the edges by the number of the
selected program clause):

3.3. EVALUATION STRATEGIES 137

?-- Q(z, c)

1 2

?- Q(y,

result:

?- Q(v, ~), ~, ~) (~,

3

i ~ R(~, c), R(~, ~) []

: I result:
[3 Q(b, c)

infimte I
computation I

?- R(~, b)

non-successful
computation

This tree has two successful computations with the different computation
results Q(b, c) and Q(c, c). Further, there is a finite non-successful compu-
tation (i.e. non-extendable to the empty clause). If in every step, the first
program clause is used for resolution, we obtain an infinite computation,
where the goal clauses become longer by one literal in each step.

Exerc i se 111: In the approach taken above, clauses are sequences of liter-
als, not sets of literals. So, identical elements in a sequence do not "melt"
into a single element as for sets. It can happen now that pure propositional
logic programs have infinite computations. Find an example!

Next we want to consider the possibilities of deterministically evaluating
canonical computation trees. We have eliminated the type 2 nondetermin-
ism by introducing canonical computations. Type 1 nondeterminism seems

138 C H A P T E R 3. L O G I C P R O G R A M M I N G

to be more sensitive to changes or restrictions in the evaluation order. The
above examples show that we cannot just cut off certain parts of the tree.
The (type 1) nondeterministic choice of the next program clause is very
critical and determines whether a successful or non-successful (possibly in-
finite) computation is obtained, and in case of a successfUl computation,
the choices of program clauses determines the computation result.

Since there is (apparently) no way of eliminating the type 1 nondeter-
minism as we did in case of the type 2 nondeterminism, a deterministic
evaluation strategy has to search the whole computation tree (for a given
input) - at least until a first solution is found. In the following we will dis-
cuss two principle possibilities: breadth-f irst search and depth- f i rs t search.

In breadth-first search the search in the tree is performed so that all
nodes on depth t are visited (e.g. from left to right) before any node on
depth t + 1 is visited (t = 0, 1, 2 , . . .) . It should be clear that every successful
computation in the computation tree of a logic program can be found this
way after finitely many steps. In other words, the breadth-first search
evaluation strategy is complete. But this completeness is paid for in the
form of computation time and space: To reach the nodes in the computat ion
tree of depth t, the breadth-first search strategy needs to visit exponentially
many nodes (in t) - provided the tree consists not only of a single path.

Standard interpreters for the programming language PROLOG use the
depth-first search evaluation strategy. Here, starting from the root of the
tree, the subtrees are visited in some fixed order (from left to right) recur-
sively. In contrast to breadth-first search the search goes into the depth of
the tree first. Whenever a node is reached that has no sons to search left
the search returns to the father node (backtracking) and continues with the
next brother node (if any).

For example, breadth-first search evaluates the tree

in the order

W

a b c

x y z r s

w, a, b, c, x, y, z, r, 8

3.3. EVALUATION STRATEGIES 139

whereas depth-first search in the order

w, a, x, y, z, b, c, r, 8.

The following algorithm realizes the depth-first backtracking evaluation
strategy, as done in P ROLOG.

P R O L O G ' s E v a l u a t i o n S t r a t e g y

Given: Logic program F = (C1, C 2 , . . . , C,) , where
Ci = Bi :- Di,1, . . . , Di,,i, and goal clause G = ? - A 1 , . . . , Ak.

The main routine consists of

success := false;
evaluate(G, []);
if success t h e n write('yes') else write('no');

and the recursive procedure evaluate works as follows:

p r o c e d u r e evaluate(G : goalclause ; sub : substitution);
var i" i n t ege r ;
b e g i n

if G - [] t h e n
b e g i n

H := (Ax A . . . A Ak)sub;
wri te('RESULT: ' ,H);
success := t r u e

e n d
else {assume G has the form G = ? - E x , . . . , Ek}

b e g i n
i . - 0 ;
whi le (i < n) a n d n o t success do

b e g i n
i : = i + l ;
i f{E1, Bi) is unifiable using most general unifier s

(where the variables in Bi have been renamed first)
t h e n

evaluate(? - (Di,1,. . . , Di,, , , E 2 , . . . , Ek)s, subs)

140 CHAPTER 3. LOGIC PROGRAMMING

e n d
e n d

end;

Exerc i se 112: In real PROLOG systems, after finding a successful com-
putation, the user is asked whether he wants to see more. Modify the above
algorithm accordingly.

Observe that PROLOG's depth-first evaluation strategy might be faster
than the breadth-first strategy. Consider a computation tree which has a
successful computation of length t, and this computation is located at the
very left of the tree. In this case depth-first will find it in about t search
steps whereas breadth-first will still need exponentially many steps.

If the solution is at the very right of the tree, then depth-first is at
least as inefficient as breadth-first. Even worse: computation trees might
contain infinite paths (see the above example), therefore it is possible that
the depth-first evaluation gets into an infinite loop before it ever reaches the
successful computation. In other words, depth-first i s - although sometimes
more efficient than breadth-first - an incomplete evaluation strategy.

We summarize this discussion in the following theorem.

T h e o r e m

The breadth-first evaluation strategy for logic programs is complete. The
depth-first evaluation strategy is incomplete.

Exercise 113: One might try the following solution towards enforcing
completeness of the depth-first search strategy. After the logic program
F and the goal clause G are given, the program clauses in F are ordered
in "some appropriate way". After this preprocessing step, the depth-first
search strategy starts. (The hope is that this might turn all infinite com-
putation paths in the tree to the right of the potential solution path).

3.4. PROLOG 141

Show that this approach fails, since there are examples for F and G
such that F u {G} is unsatisfiable, and therefore, by completeness of SLD-
resolution, a successful computation exists, but the depth-first evaluation
strategy will go into an infinite loop under every arrangement of the pro-
gram clauses.

Hint: Consider the logic program for the monkey-and-banana problem.

By the advantages in efficiency, most PROLOG interpreters stick to this
incomplete depth-first evaluation strategy. In a way, the problem is passed
off to the programmer. He has to be aware of the PROLOG evaluation
mechanism and has to plan the arrangement of his program clauses care-
fully. Even this will not help in some cases (see Exercise 113). To overcome
this difficulty, PROLOG provides certain non-logical operators, like the cut,
that influence PROLOG's evaluation order, see the next section). This is in
conflict with the ideal conception of logic programming: the "programmer"
should only provide the logical problem specification, whereas the system
takes care of the algorithmic evaluation of the problem specification.

Kowalski introduced the equation

algorithm = logic + control

in the sense that algorithms always contain implicitly two components: a
logic component which specifies the knowledge about the problem in ques-
tion, and a control component which constitutes the solution strategy for the
problem. In usual programming languages both components are strongly
mixed and not separable, whereas in a logic programming language the pro-
gram should only embody the logic component, and the control component
should be a matter of the system, that carries out the evaluation algorithm.

This ideal case described above is certainly not yet realized by existing
PROLOG implementations, using the depth-first evaluation strategy. On
the other hand, the breadth-first strategy is hopelessly inefficient. One has
to compromise on the ideal concept of logic programming (total separation
of logic and control component) and on efficiency.

3.4 P R O L O G

This section is not intended to be a PROLOG manual. We only wish to
demonstrate some of the aspects that are relevant when stepping from the

142 CHAPTER 3. LOGIC PROGRAMMING

pure logic programming concep t - as discussed in the last sec t ions - to a
real-life programming language, like PROLOG. PROLOG was developed
in the seventies by a research group around A. Colmerauer in Marseilles,
France.

First, there must be syntactical conventions to enable a distinction
between the different syntactical entities that occur in a logic program
(clauses, variables, function and predicate symbols, logical operators). For
example, in PROLOG one has to use upper-case symbols to identify vari-
ables, whereas function symbols and predicate symbols are written in lower-
case. Furthermore, every clause must end with a period. In this section we
will adopt these conventions.

In a practical programming language, concepts are needed that allow
one to read data from some external device, like the keyboard or some file.
The program must be able to write on the screen or into some file. In PRO-
LOG, these tasks are accomplished by providing certain syslem predicates
like read and wr~le that cannot be modified by the user. From the logical
standpoint, these predicates do not have a meaning (they immediately eval-
uate to t r u e (or 1)), but they produce side e~ecls, like writing a symbol
on the screen or into a file.

If the PROLOG programmer uses such system predicates, it becomes
necessary that he/she is aware of the evaluation strategy of PROLOG. A
goal clause like

?- read(X), compute(X, Y), write(Y).

can be evaluated in a sensible way only from left to right. This is in contrast
to the theoretical investigations of Section 3.3 where it was shown that such
a logic program (without side effects) could also be evaluated from right to
left (cf. the Swapping Lemma).

Other system predicates provided in PROLOG enforce certain instanti-
ations of variables that deviate from the unification algorithm. An example
is the predicate is. For example, if the P ROLOG system find the clause
is(X, Y �9 5) (or in infix notation: X is Y �9 5) and Y is already bound (i.e.
instantiated) to the constant 7, then X will be instantiated to 35. By this
concept it is possible to perform arithmetical computations in PROLOG.

3.4. P R O L O G 143

E x a m p l e (cf. Exercise 100):

f ib(X, Y) X 1 is X - 1, X 2 is X - 2,

f ib(X1, Y1) , fi b (X 2 , Y2), Y is Y1 + Y2 .

E x e r c i s e 114" Using the is predicate, compute the factorial function by a
PROLOG program.

Using the system predicate is, the invertibility of the parameter passing
mechanism is lost. The above program for the Fibonacci function can only
be used in a way that the first parameter is the input parameter and the
second is the output parameter.

A further aspect of PROLOG implementations is that functions and
predicates can either be written in prefix notation (e.g. +(5,7)) or infix no-
tat ion (5+7). Further, PROLOG does not make a real distinction between
function and predicate symbols. This goes even so far that the (logical)
symbol " - that stands for the implication sign is handled like a special
system predicate/function, written in infix notation, that needs a special
evaluation by the PROLOG system. The non-distinction between predicate
and function symbols has the consequence that clauses and terms have to
be considered as the same syntactical objects. Therefore, PROLOG al-
lows variables on clause positions, and allows them to be instantiated with
clauses. Therefore, a PROLOG program is able to manipulate its own
"data base" (by the system predicates assert and retract).

More complex data structures are expressed in PROLOG by using nest-
ings of terms. For example, the term

cons(a, cons(b, cons(c, nil)))

denotes a list consisting of the three elements a, b, and c. Here, the constant
nil denotes the empty list and the binary function symbol cons is the l ist
constructor. In a term of the form cons(x, y), x denotes the first element of
the list and y denotes the rest of the list (which is itself a list). It is more
convenient to use a more succinct representation for lists. PROLOG allows
one to write

[al, a2 , . . . , a k]

144 C H A P T E R & LOGIC P R O G R A M M I N G

instead of
cons(at, cons(a2,. . , cons(ak, ni l) . . .)) .

Furthermore,
[~ly]

is an abbreviation for
cons (x, y)

and [] stands for the empty list niL

E x a m p l e : [[a, [b, c]] I [d, eli is a shorthand for

cons(cons(a, cons(cons(b, cons(c, nil)), nil)), cons(d, cons(e, nil))).

The following diagram shows the structure of this term where each dot
stands for an application of cons.

~ nil
d e

; nil

nil

b c

The most common operation on lists is the operation of concatenation
(i.e. appending one list to another) which is denoted by append. The fol-
lowing logic program describes this operation.

app~=d ([], L, L).
append([XlLt], L2, [XILa]) �9 - append(L1, L2, L3).

Here L, Lt, L2, L3 are variables, and append(L1, L2, L3) expresses the
fact that L3 is the concatenation of the lists Lt and L2.

E x e r c i s e 115: Present a successful computation of the above program
with the given goal clause

7- append([a, b, c], [a, e,/1, X).

3.4. PROLOG 145

What are the successful computations with the goal clause

?- append (X, Y, [a, b, c, a]).

Here X, Y are variables.

Exerc i se 116: Present a logic program that reverses a list. So,
reverse(L1,/,2) should express that 1,2 is the reversed version of L1 (Exam-
ple: .7._ reverse([1, [2, 3], 4, 5], Z) leads to the result g' : [5, 4, [2, 3], 1]).

Modify this program so that it reverses every sublist, too, not just
the top level of the list. Call this predicate deepreverse (Example:
.z_ deepreverse([1, [2, 3], 4, 5], Z) leads to the result g = [5, 4, [3, 2], 1]).

Exerc i se 117: PROLOG has a built-in system predicate atomic(X) that
is evaluated successfully if and only if at the time of evaluation the variable
X is instantiated with a constant. Formulate a logic program (using the
predicates atomic and ada~ that computes the number of leaves of the
binary tree that is represented by a list. For example,

?- b, N).

should lead to the result N - 5.

Example" The following program is able to permute a list.

], []).
permute([XIY], g) :- permute(Y, W), insert(X, W, g).
insert(A, B, [AIB]).
insert(A, [BIC], [BID]) : - insert(A, C, D).

E.g., the goal clause

?- permute([it, never, rains, in, ealifornia], Z)

leads to the results

146 CHAPTER 3. LOGIC P R O G R A M M I N G

Z = [it, never, rains, in, californi~
Z = [never, it, rains, in, california]

Z = [never, rains, it, in, california]
Z = [never, rains, in, it, california]

E x e r c i s e 118: The following program is able to sort a list - but in a very
inefficient way.

~o~(L,, L~) :- p ~ ~ t ~ (L , , L~), o~d(Z~).
o~d([]).
o~d([X]).
ord([Xl[YIg]]) :- X <_ Y, ord([YIg]).

Write a PROLOG program for Quicksort.

E x a m p l e : The PROLOG program below translates ari thmetical expres-
sions, resp. assignments, into assembler code. For example, consider

z : = (a . b) + c .

In this case we obtain

[[load, a], [load, b], mul, [load, c], add, [store, z]]

Here load means loading an element on a stack, and mul pops the top two
stack elements, multiplies them, and pushes the result on top of the stack
(add works analogously for addition). The command store stores the top
stack element in the memory.

compile(X := Y, Z) :- compile(Y, W),
append(W, [[ao,~, Xl], Z).

compile(X �9 Y, Z) :- compile(X, U),
compile(Y, V),
append (U, V, W),
~pp~d(W, [~U] , z).

3.4. PROLOG 147

compile(X + Y, Z) :- compile(X, U),
compile(Y, V),
append (~, V, W),
append(W, [add], g).

compile(X, [[load, X]]) : - atomic(X).

E x e r c i s e 1 1 9 : First define formally the syntax of a programming language
ASCA (a suitable subset of PASCAL), and then write a compiler for ASCA-
programs in PROLOG.

Exerc ise 120: Implement a PROLOG interpreter in PASCAL that realizes
PROLOG's depth-first search strategy, and additionally is able to handle
at least some of PROLOG's built-in predicates.

PROLOG's incomplete depth-first evaluation strategy was already men-
tioned. Moreover, in Exercise 113 it was discussed that this incompleteness
is, in a sense, inherent. It cannot be eliminated by rearranging the order of
the clauses. Obviously this is a dilemma, and raises the question what pos-
sibilities there are to avoid such problems. PROLOG provides a somewhat
peculiar way out of this dilemma, namely the cut.

Syntactically, the cut is like an atomic formula and is denoted by an
exclamation mark (!). This type of atomic formula is only allowed on the
right side of PROLOG procedure definitions (i.e. in the procedure body).

Example:
a : - b, c, !, d.

The presence of a cut does not influence the logic (i.e. semantics) of a clause,
but the depth-first evaluation strategy is altered. Some part of the search
tree will be cut off whenever such a cut symbol is present. By this, it is
possible to ignore parts of the search tree that contain infinite computation
paths (which are "dangerous" for the depth-first evaluation). On the other
hand, the cut can just as well be "misused" to ignore parts of the search
tree with existing solutions.

148 C H A P T E R 3. L O G I C P R O G R A M M I N G

Here the opinions about the cut are split: Some programmers really
want to have a tool in hand that allows influencing the search strategy and
allows jumping over existing solutions (this technique will play a role below
when we talk about the negation).

The other opinion is that the cut is in conflict with the ideal of logic
programming. In logic programming languages the programmer should only
specify what the problem to be solved is, but not how to solve it. A concept
like the cut certainly belongs to the how-category. The cut in PROLOG
is somehow comparable to the goto in standard operational programming
languages.

How does the cut work in detail? Whenever a cut in a goal clause, like

2_. .,I a, b, c.

is evaluated for the first time, it leads to success immediately (as if there
would be a fact consisting of "!." in the logic program). Then the next goal
clause to evaluate would be

?- a ,b ,c .

But suppose the search process, by the backtracking mechanism, returns
to the goal clause

2_ t a ,b ,c . �9 o ,

since there is no solution found in the subtree below the node ? - a, b, c. In
this case the search process deviates from the depth-first search order. A
"jump" is enforced that leads to the last parent goal clause in the search tree
that did not contain the cut. This goal clause is then considered as evaluated
non-successfully (that is, the Boolean variable success is set to false in the
evaluation algorithm, cf. last section). This action has the consequence that
potential subtrees located to the right of the node labeled with ?-!, a, b, c. are
not considered - no matter whether they contain successful computations
or not.

E x a m p l e : Consider the logic program

b : - d , ! , e .
d.

3.4. P R O L O G 149

and the goal clause ? - a. The following diagram demonstrates the whole
search tree and the depth-first search order - and how the order is influenced
by the cut.

search order
.y

"--7 ? - - a

? . ~ ? - o,c ~. \ a o o

, . 7_ d , ' e , c ~ . . .

c'- - -r
t

\

. . e~C " ' "

I 1 effect of the cut

~-f ?-- e, c 4 /
t \

\ " "]

(no successful
computa t ion found here)

subtrees

not

searched

Exerc i se 121: Modify the PROLOG evaluation algorithm from Section
3.2 such that the cut is correctly handled.

Exerc i se 122: The following piece of program

a : - b , ! , c .
a : - d .

is used in actual PROLOG programs to simulate the well known i f - then-
else construct from standard programming languages. In a sense, the above
program can be interpreted as

150 C H A P T E R 3. LOGIC P R O G R A M M I N G

a : - i f b t h e n c e lse d.

Analyze the effect of the cut in the above program using SLD search trees.

E x e r c i s e 123: Consider the PROLOG program

happy :- birthday, christmas.
happy :- birthday.
happy.
birthday : - pigscanfly
christmas :- pigscanfly
birthday : - birthday

(a) Construct the SLD search tree for the goal clause .7_ happy.

(b) Rearrange the order of the clauses such that the depth-first
search strategy finds a solution for the goal .7.__ happy.

(c) Insert a cut in the above program so that the (modified) search
tree becomes finite - but as large as possible.

(d) Describe the effect of inserting a cut in any of the 3 possible
positions in the first clause.

In the following we summarize the possible and typical applications of the
cut.

1. After finding a first solution, an insertion of a cut allows one to forbid
every further search for a solution. In some contexts it is clear that
there is no other solution, or that the part of the tree not searched
contains infinite computat ion paths. For example, in the logic pro-
gram for addition, an insertion of a cut in the clause that expresses
the base of the recursion will enforce that there is no further search
whenever the first (and unique) solution has been found.

a(x, O, x) : - !.
a(x, s(y), s(z)) :-- a(x, y, z).

3.4. PROLOG 151

2. The cut allows to construct clauses that perform a similar action as
the i f - then -e l se known from standard programming languages (cf.
Exercise 122). The situation with the negation is similar (this is
discussed in more detail below).

The sensible use of the cut allows one to improve the efficiency of
programs because subtrees which are known to contain no solutions
can be cut off in the search process. Although there is no general rule
about where to introduce a cut to improve the efficiency- it depends
very much on the intuition and experience of the programmer.

. The cut allows one to overcome the logical incompleteness of PRO-
LOG's depth-first evaluation strategy. Subtrees containing infinite
computation paths can cut off.

Previously we discussed the notion that there are several reasons for re-
stricting the predicate logic to Horn clauses in the PROLOG programming
language. It was this restriction which permitted the procedural interpre-
tation of logic programs, and which allowed us to develop such a finely
structured theory (Clark's Completeness Theorem, the Swapping Lemma,
and the various notions of semantics). But there can be cases where Horn
formulas are too weak or not adequate to express the problem context. Here
the negation plays a special role. Remember that the negation of a Horn
formula in general is not equivalent to any Horn formula. But sometimes
it is necessary to know whether a negative literal, say --A, follows from a
logic program F. Viewed formally, this would correspond to a goal clause
of the form ? - --A or ? - not(A). Surprisingly, the logical answer to such
a question is always "no".

E x e r c i s e 124: Prove that there is no set of Horn clauses F and no negative
literal -,A such that --,A is a consequence of F. In other words, Horn clause
programs do not allow one to draw negative conclusions.

Therefore, our first a t tempt failed. But instead of asking the question
whether the negation of A is a consequence of F, we now ask whether A is
not a consequence of F. Obviously, in general this is not the same. In fact,
to postulate equivalence of both notions means the same as claiming the
compleleness of the logic program F (in the sense discussed in Section 2.3),
that is, for all closed formulas A, either A E Cons(F) or -~A E Cons(F).

152 CHAPTER 3. LOGIC PROGRAMMING

Assuming this condition holds, whenever A is not a consequence of F, then
A is false (i.e. unsatisfiable). In this context, this condition is called the
closed world assumption. Since A is not a consequence of F if and only if
F A -~A is satisfiable if and only if the empty clause is not derivable from
the clause set F U { {-~A} }, this situation is called negation by failure.

It is desirable to have at least this 'negation by failure' available in
PROLOG. That is, if A cannot be proved to be a consequence of F, then
assume that -~A is a consequence of F (and give the answer 'yes' on the
query ? - ~A.) Still, this cannot be implemented - by basic principles:
If for every A and F it could be determined in finite time whether A is a
consequence of F, then the decidability of the predicate logic would follow.
This contradicts the results obtained in Section 2.3. (The undecidability
result still holds when we restrict ourselves to Horn clauses).

The next weaker form of negation is negation by finite failure. It means
that -~A is a consequence of F is assumed if the SLD-computation tree
of F with goal clause A is non-successful and finite. Exactly this form of
negation is implemented in PROLOG: The goal clause .7- not(p) as input
causes the PROLOG interpreter to search for successful computations of
the form

(?- p, []) I T ' - " (o, ,,,b).
Only if the search tree for this query is finite and does not contain a suc-
cessful computation, the PROLOG interpreter outputs 'yes', otherwise 'no'.
(Notice that apart from this, the interpreter cannot output any computa-
tion result). This form of negation is dangerous because the search for a
successful computation might lead to an infinite path.

Negation by finite failure as introduced above can easily be expressed
in PROLOG i tse l f - 'misusing' the cut (existing solutions are cut off here).

nor : - P, !, fail.
no~(P).

Here fail is a standard predicate whose evaluation always ends non-
successfully so that backtracking occurs (just as if there is no program
clause with procedure head fail). Observe that the variable P in the above
program takes as values atomic formulas (instead elements of the Herbrand
universe).

Exe rc i se 125: Trace back the evaluation of the query .z_ no,(not(not(a))).

3.4. PROLOG 153

First suppose that a is a fact contained in the logic program, then that it
is not.

E x e r c i s e 126: Consider the logic program

p(X) :- !, q(X).
p(a).
q(b).
q(a) :- q(a).

Find out what PROLOG answers to each of the following queries.

7.- p(a).
?- =ot(p(a)).
?- q(a).
7.-- not(q(a)).
.7- q(X), not(p(X)).
?- not(p(X)), q(X).

A further problem with PROLOG's form of negation is that in a goal
clause of the form

?- . . . ,~ot(t).. .

the term t (respectively the atomic formula t) should not contain any unin-
s tant iated va r i ab les - at the time when t is evaluated. This can lead to an
incorrect evaluation result. Consider for example the program

p(a).
q(b,b).

and the goal clause

?- .o,(p(X)), q(X, x).

154 C H A P T E R 3. L O G I C P R O G R A M M I N G

The desired answer X - b will not be obtained (Why?).

The si tuation is different with the goal clause

?- q(X, x),

which leads to the answer X - b.

The intention of this section is to convince the reader of the fact that
P R O L O G is just one possibility for realizing the ideas of logic programming
in the context of a usable programming language. It should be seen tha t
other concepts are thinkable, and that the research in this direction is not
yet settled.

Bibliography

T. Amble. Logic Programming and Knowledge Engineering.
Wesley, Reading, MA, 1987.

Addison-

K. R. Apt and M. H. van Emden. Contributions to the theory of logic
programming. Journal of the Association for Computing Machinery,
29 (1977): 841-862.

G. Asser. Einfghrung in die mathematische Logik I - III. Verlag Harri
Deutsch, Frankfurt/M, 1972.

M. Bauer, D. Brand, M. Fischer, A. Meyer, and M. Paterson. A note on
disjunctive form tautologies. SIGACT NEWS, Vol. 5, No. 2 (1973)"
17-20.

E. Bergmann and H. Noll. Mathematische Logik mit Informatik-Anwen-
dungen. Springer-Verlag, Berlin, 1977.

W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, 1982.

W. Bibel and Ph. Jorrand (Eds.) Fundamentals of Artificial Intelligence.
Lecture Notes in Computer Science 232, Springer Verlag, Berlin, 1985.

K.H. Bl~ius and H.J. Bfirckert (Eds.) Deduktionssysteme.
Verlag, Mfinchen 1987.

Oldenburg

G.S. Boolos and R.C. Jeffrey. Computability and Logic.
University Press, Cambridge, 1974.

Cambridge

E. BSrger.
1985.

Berechenbarkeit, KomplezitSt, Logik. Vieweg, Braunschweig,

A. Bundy. The Computcr Modelling of Mathematical Reasoning.
demic Press, London, 1983.

Aca-

155

156 BIBLIOGRAPHY

W.D. Burnham and A.R. Hall. Prolog Programming and Applications.
Macmillan, London, 1985.

C. L. Chang and R. C. T. Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, New York, 1973.

V. Chvs and E. Szemer~di. Many hard examples for resolution. Jour-
nal of the Assoc. Comput. Mach. 35 (1988): 759-768.

K. L. Clark. Predicate Logic as a Computational Formalism. Research
monograph 79/59 TOC, Imperial College, London, 1979.

K.L. Clark and S.-A. Ts (Eds.) Logic Programming, Academic
Press, New York, 1982.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-
Verlag, Berlin, 1981.

M.D. Davis and E.J. Weyuker. Computability, Complexity and Lan-
guages, Chapter 11+12. Academic Press, New York, 1983.

R.D. Dowsing, V.J. Rayward-Smith and C.D. Walter. A First Course in
Formal Logic and its Application8 in Computer Science. Blackwell
Scientific Publ., Oxford, 1986.

B. Dreben and W. D. Goldfarb. The Decision Problem - Solvable Classes
of Quantificational Formulas. Addison-Wesley, Reading, MA, 1979.

H. D. Ebbinghaus, J. Flum and W. Thomas. Einfs in die ma-
thematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt,
1978.

M. H. van Emden and R.A. Kowalski. The semantics of predicate logic as
a programming language. Journal of the Association for Computing
Machinery 23 (1976): 733-742.

Y.L. Ershov and E.A. Palyutin.
Moscow, 1984.

Mathematical Logic. Mir Publishers,

D. M. Gabbey. Elementary Logic - A Procedural Perspective.
notes, Imperial College, London, 1984.

Lecture

J. H. Gallier. Logic for Computer Science - Foundations of Automatic
Theorem Proving. Harper & Row, New York, 1986.

M. Gardner. Logic Machines and Diagrams.
Press, Chicago, 1958.

The University of Chicago

BIBLIOGRAPHY 157

M. Genesreth, N. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann Publ., 1987.

F. Giannesini, H. Kanoui, R. Pasero and M. van Canegham.
Addison-Wesley, Reading, MA, 1986.

PROLOG.

C. Green. Theorem proving by resolution as a basis for question-answering
systems, in B. Meltzer and D. Michie (Eds.) Machine Intelligence
4, 183-205, Elsevier Publ., New York, 1969.

M. Hanus. ProblemlSsen in PROLOG. Teubner, Stuttgart, 1986.

N. Heck. Abstrakte Datentypen mit automatischen Implementierungen.
Dissertation, University of Kaiserslautern, 1984.

H. Hermes. Einfghrung in die mathematische Logik.
Stuttgart, 1976.

Teubner Verlag,

C.J. Hogger. Introduction to Logic Programming.
York, 1984.

Academic Press, New

J.E. Hopcroft and J.D. Ullman.
guages, and Computation.

Introduction to Automata Theory, Lan-
Addison-Wesley, Reading, MA, 1979.

A. Horn. On sentences which are true of direct unions of algebras.
of Symb. Logic 16 (1951): 14-21.

Journ.

O. Itzinger. Methoden der Kgnstlichen Intelligenz, Chapter 2.
Hanser Verlag, Mfinchen, 1976.

Carl

M. Kaul. Logik. Lecture Notes, EWH Koblenz, 1983.

H. Kleine Brining and S. Schmitgen.
gart, 1986.

PROLOG. Teubner Verlag, Stutt-

R. Kowalski. Predicate logic as programming language.
Processing 74, 569-574, North-Holland, 1974.

Information

R. Kowalski. Logic for Problem Solving. Elsevier North-Holland, Amster-
dam, 1979.

R. Kowalski. Algorithm = Logic + Control. Journal of the Association
for Computing Machinery 22 (1979): 424-436.

M. Levin. Mathematical Logic]or Computer Scientists.
port, MIT Project MAC, 1976.

Technical Re-

158 BIBLIOGRAPHY

H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Com-
putation, Chapter 8-9. Prentice Hall, Englewood Cliffs, NJ, 1981.

H.R. Lewis. Unsolvable Classes of Quantificational Formulas.
Wesley, Reading, MA, 1979.

Addison-

J. W. Lloyd. Foundations of Logic Programming.
Berlin, 1984.

Springer-Verlag,

D. W. Loveland. Automated Theorem Proving: A Logical Basis. Elsevier
North-Holland, New York, 1979.

Z. Manna. Mathematical Theory of Computation, Chapter 2.
Hill, New York, 1974.

McGraw-

J. Minker (Ed.) Foundations of Deductive Databases and Logic Program-
ming. Morgan Kaufmann Publ., Los Altos, Ca., 1988.

L. Naish. Negation and Control in PROLOG. Lecture Notes in Computer
Science 238, Springer, Berlin, 1986.

N.J. Nilsson. Problem Solving Methods in Artificial Intelligence, Chapter
6-8. McGraw-Hill, New York, 1971.

R. Nossum.
64.

Automated theorem proving methods. BIT 25 (1985): 51-

M.S. Paterson and M.N. Wegman. Linear Unification.
purer and System Sciences, 16 (1978): 158-167.

Journal of Corn-

PROLOG. Special issue of Communications of the Association for Com-
puting Machinery, 28, No. 12 (1985).

W. Rautenberg.
1979.

Nichtklassische Aussagenlogik. Vieweg, Braunschweig,

M. M. Richter. Logikkalk~le. Teubner Verlag, Stuttgart, 1978.

M. M. Richter. Prinzipien der kgnstlichen Intelligenz.
Stuttgart, 1989.

Teubner Verlag,

J. A. Robinson. Logic: Form and Function.
New York, 1979.

Elsevier North-Holland,

D. RSdding. Einfghrung in die PrSdikatenlogik.
sity of Mfinster, 1970.

Lecture Notes, Univer-

BIBLIOGRAPHY 159

J. R. Shoenfield.
1967.

Mathematical Logic. Addison Wesley, Reading, MA,

W. Schwabhs Modelltheorie I + II. Bibl. Institut, Mannheim, 1971.

D. Siefkes. Logik fgr Informatiker.
Berlin, 1986.

Lecture Notes, Techn. University of

J. Siekmann and G. Wrightson (Eds.)
Springer, Berlin, 1983.

Automation of Reasoning 1 + 2.

L. Sterling and E. Shapiro.
Massachusetts, 1987.

The Art of Prolog. MIT Press, Cambridge,

A. Tarski, A. Mostowski and R. M. Robinson.
North-Holland, Amsterdam, 1971.

Undecidable Theories.

A. Thayse (Ed.) From Standard Logic To Logic Programming. Wiley,
1988.

R. Turner. Logics for Artificial Intelligence. Elis Horwood Limited, 1984.

A. Urquhart. Hard examples for resolution. Journal of the Assocation
of Computing Machinery 34 (1987): 209-219.

T. Varga. Mathematische Logik fgr A nfSnger I § II.
Deutsch, Frankfurt/M., 1972.

Verlag Harri

H. Vollmer. Resolutionsverfeinerungen and ihre VollstSndigkeitssdize.
study thesis, EWH Koblenz, 1987.

C. Walther. Automatisches Beweisen. in: Kgnstliche ;ntelligenz.
berichte Informatik 259, Springer, Berlin, 1987.

Fach-

L. Wos. Automated Reasoning - 33 Basic Research Problems.
Hall, Englewood Cliffs, NJ, 1988.

Prentice-

L. Wos, R. Overbeek, E. Lusk, F. Boyle. Automated Reasoning -Intro-
duction and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984.

Table o f N o t a t i o n s

IN is the set of natural numbers, including zero, IN = {0, 1, 2 , . . . }

{0, 1}* is the set of finite 0-1-strings, including the empty string

~, {o, 1}* = {~, o, 1, oo, ol, lo, 11, ooo, . . . }

{o, 1}+ = {o, 1}* - {~} = {o, 1, oo, ol, lo, 11, ooo, . . . }

N o t a t i o n s d e f i n e d in t h e t e x t :

4 Res'(F)
V 4 3 42
A 14 V 42
--, 4 F* 42

4 Free(F) 43
Ai%l 5 V~ 44
Vin__l 5 IA 44
,4 5,46]'A 44
~ 5 pA 44

9, 47 x A 44
9, 47 fltfx/u] 46

= 14, 51 [x/t] 53
CNF 18 RPF 56
DNF 19 e 64
E2 31 Th(.A) 68
Res(F) 32,89 Cons(M) 69
Resn(F) 33,89 D(F) 70

33,89 E(F) 74
[] 84,142
V H 92
ANSWER
: - 115
? - 116

119
Sproc 126

Stood 127
OPF 128
op?~ 128
FPF 128
~]ixpoint 129
[:~ lY] 142
! 145

not 149,150
fail 150

109

161

I n d e x

absorption 15
Ackermann 121
answer generation 109
answer predicate 111
append 144
arithmetic 68
arity 42
assert 142
assignment 5
associativity 15
atomic 144
atomic formula 4, 42
automated theorem proving 1
axiom 68
axiom of choice 58
axiom system 28
axiomatizable 69

base clause 98
binary resolution 106
bound 42
breadth-first search 137

calculus 29
canonical computation 134
canonical structure 70
Clark 126
clause 30
clause graph 37
closed formula 42
closed world assumption 151
C N F 18
Colmerauer 141

commutativity 15
compactness theorem 26
compile 146
complete 68, 135, 137
completeness 29, 98, 151
computability theory 62
computable 62
computation 122
conclusion 24
configuration 121
conjunction 4
conjunctive normal form 18
cons 143
consequence 10
constant 42
contradictory 9, 47
control component 140
correctness 29, 69
cut 146

decidable 62
deepreverse 144
definite clause 100, 118
deMorgan 15
denotation 129
depth first search 137
derivation 35
disjunction 4
disjunctive normal form 18
distinguishability index 42
distributivity 15
D N F 18
don't care nondeterminism 133

163

164 I N D E X

double negation 15

empty clause 31
equivalence 14, 51
evaluation strategy 131, 138
existential quantifier 42

fact 117
Fibonacci 120
fnitely axiomatizable 29, 69
first order predicate logic 48
fixpoint 131
fixpoint semantics 131
formula 1, 4, 42
free 42
function symbol 42

Gilmore 76
Gilmore's procedure 76
goal clause 100, 118
GSdel 69, 70
goto 147
ground instance 78
ground resolution 78
ground resolution procedure 79
ground set 44
ground substitution 78
group 51, 69

halting clause 118
Herbrand 70
Herbrand expansion 74
Herbrand model 72
Herbrand structure 71
Herbrand universe 70
Herbrand's theory 1, 2, 70
hold 9
Horn 23
Horn clause program 117, 118
Horn formula 1, 23

idempotency 15
incompleteness theorem 69

inconsistent 67
induction on formula structure 8
input clause 98
input parameter 114
input resolution 99
input restriction 99
insert 145
instance 78
interpretative semantics 128
interpreter 121
invertible parameter passing 114
is 142

least fixpoint 131
leaves 144
lifting lemma 90
linear resolution 97
literal 18, 30
logic 1
logic component 140
logic program 118
logic programming 1, 109
LSwenheim 74
LUSH-resolution 101

marking algorithm 25
matrix 42
mgu 83
minimally unsatisfiable 39, 103
mirror principle 9
model 1, 9, 47
model theoretic semantics 129
model theory 68
monadic 67
monkey-and-banana problem 114
most general unifier 83

N-resolution 97
N-restriction 97
negation 4, 150
negation by failure 151
negation by finite failure 151

I N D E X 165

negative 18
negative clause 39
nil 143
non-constructive proof 28
nondeterminism 131
nondeterministic 122
normal form 14, 18, 51
not 152
NP-completeness 39

occurrence check 87
ord 145
output parameter 114

P-resolution 97
P-restriction 97
PCP 63
Peano arithmetic 69
permute 146
positive 18
positive clause 39
Post's Correspondence Problem 63
premise 24
predicate logic 41
predicate symbol 41
prenex form 55
Presburger arithmetic 68
problem 63
problem specification 140
procedural semantics 128, 129
procedure body 118
procedure call 118
procedure clause 117
procedure head 118
process 128
program activation 118
program call 118
program clause 100, 118
program verification 1
programming language 1
PROLOG 2, 138, 141
proof l, 35

propositional logic 3
pushdown automaton 135

quantifier 42
query clause 118

rectified 55
recursive 124
recursively enumerable 69, 77
reduction 64
refinement 1, 2
refinements of resolution 97
refutation complete 33
renaming 54
resolution 1, 29, 88
resolution graph 36
resolution lemma 32
resolution theorem 33, 92
resolvent 30, 88
restriction 97
result 122
retract 143
reverse 144
R P F 57

s-equivalence 59
satisfiable 8, 26, 47
second order predicate logic 48
selection function 101
semantics 1, 46, 128, 129, 131
semi-decidable 1, 69
semi-decision procedure 61, 76
set-of-support restriction 99
side clause 98
side effect 141
Skolem 70, 74
Skolem formula 56
SLD-resolution 2, 100
solution 63
sort 145
ST 16
stack 51

166 I N D E X

standardized SLD-resolution 118
strategy 97, 131
structure 44
subformula 4, 42
substitution 54
substitution theorem 14
successful computation 122
suitable 45
suitable assignment 9
syntax 1, 4, 41
system predicate 141

tautology 9
term 41, 42
theorem 67
theory 67
theory of groups 69
transition relation 121
translation lemma 54
true 47
truth table 11
truth value 1, 5, 46
type 1 nondeterminism 131
type 2 nondeterminism 131

undecidable 61, 62
unifiable 83
unification algorithm 84
unification theorem 84
unifier 83
unify 83
unit 97
unit clause 37
unit preference strategy 97
unit resolution 100
universal closure 92
universal quantifier 42
universe 44
unsatisfiable 47

valid 9, 47
value 46
variable 41

	Cover
	Copyright Page
	Title Page
	Copyright Page
	Dedication
	Preface
	Contents
	Introduction
	1 Propositional Logic
	2 Predicate Logic
	3 Logic Programming
	Bibliography
	Table of Notations
	Index

